Copied to
clipboard

G = M4(2).13D4order 128 = 27

13rd non-split extension by M4(2) of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2).13D4, (C2×Q8).7Q8, C4⋊C4.105D4, (C2×C8).161D4, C4.152(C4⋊D4), C4.101(C22⋊Q8), C22.6(C22⋊Q8), C2.29(D4.3D4), C2.21(D4.5D4), C23.281(C4○D4), M4(2)⋊C4.7C2, (C22×C8).171C22, (C22×C4).736C23, C23.38D4.9C2, C2.5(C23.Q8), (C22×Q8).74C22, C22.242(C4⋊D4), C22.C42.15C2, C42⋊C2.67C22, C22.9(C422C2), (C2×M4(2)).28C22, C42.6C22.1C2, (C2×C4).21(C2×Q8), (C2×C4).1054(C2×D4), (C2×C8.C4).20C2, (C2×C4).351(C4○D4), (C2×C4⋊C4).140C22, (C2×Q8⋊C4).25C2, (C2×C4.10D4).3C2, SmallGroup(128,796)

Series: Derived Chief Lower central Upper central Jennings

C1C22×C4 — M4(2).13D4
C1C2C4C2×C4C22×C4C22×Q8C2×Q8⋊C4 — M4(2).13D4
C1C2C22×C4 — M4(2).13D4
C1C22C22×C4 — M4(2).13D4
C1C2C2C22×C4 — M4(2).13D4

Generators and relations for M4(2).13D4
 G = < a,b,c,d | a8=b2=c4=1, d2=a6b, bab=a5, cac-1=a-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=a2bc-1 >

Subgroups: 200 in 104 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C4.10D4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C8.C4, C2×C4⋊C4, C42⋊C2, C22×C8, C2×M4(2), C22×Q8, C22.C42, C2×C4.10D4, C2×Q8⋊C4, C23.38D4, C42.6C22, M4(2)⋊C4, C2×C8.C4, M4(2).13D4
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C4⋊D4, C22⋊Q8, C422C2, C23.Q8, D4.3D4, D4.5D4, M4(2).13D4

Character table of M4(2).13D4

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H8I8J
 size 11112222228888884444888888
ρ111111111111111111111111111    trivial
ρ211111111111-111-111111-1-1-1-1-1-1    linear of order 2
ρ31111111111-1-1-1-1-1-111111-1111-1    linear of order 2
ρ41111111111-11-1-11-11111-11-1-1-11    linear of order 2
ρ51111111111-111-111-1-1-1-11-11-1-1-1    linear of order 2
ρ61111111111-1-11-1-11-1-1-1-1-11-1111    linear of order 2
ρ711111111111-1-11-1-1-1-1-1-1111-1-11    linear of order 2
ρ8111111111111-111-1-1-1-1-1-1-1-111-1    linear of order 2
ρ92222-2-2-222-2000000-222-2000000    orthogonal lifted from D4
ρ102222-2-22-2-220-200200000000000    orthogonal lifted from D4
ρ112-2-22-2222-2-20000000000000-220    orthogonal lifted from D4
ρ122222-2-2-222-20000002-2-22000000    orthogonal lifted from D4
ρ132222-2-22-2-220200-200000000000    orthogonal lifted from D4
ρ142-2-22-2222-2-200000000000002-20    orthogonal lifted from D4
ρ152-2-22-22-2-22200-20020000000000    symplectic lifted from Q8, Schur index 2
ρ162-2-22-22-2-22200200-20000000000    symplectic lifted from Q8, Schur index 2
ρ172-2-222-22-22-2-2i002i000000000000    complex lifted from C4○D4
ρ182-2-222-2-22-2200000000002i0-2i000    complex lifted from C4○D4
ρ192-2-222-2-22-220000000000-2i02i000    complex lifted from C4○D4
ρ20222222-2-2-2-200000000000-2i0002i    complex lifted from C4○D4
ρ21222222-2-2-2-2000000000002i000-2i    complex lifted from C4○D4
ρ222-2-222-22-22-22i00-2i000000000000    complex lifted from C4○D4
ρ2344-4-40000000000002200-22000000    symplectic lifted from D4.5D4, Schur index 2
ρ2444-4-4000000000000-220022000000    symplectic lifted from D4.5D4, Schur index 2
ρ254-44-400000000000002-2-2-20000000    complex lifted from D4.3D4
ρ264-44-40000000000000-2-22-20000000    complex lifted from D4.3D4

Smallest permutation representation of M4(2).13D4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 9)(2 14)(3 11)(4 16)(5 13)(6 10)(7 15)(8 12)(17 34)(18 39)(19 36)(20 33)(21 38)(22 35)(23 40)(24 37)(25 41)(26 46)(27 43)(28 48)(29 45)(30 42)(31 47)(32 44)(49 61)(50 58)(51 63)(52 60)(53 57)(54 62)(55 59)(56 64)
(1 22 9 35)(2 21 10 34)(3 20 11 33)(4 19 12 40)(5 18 13 39)(6 17 14 38)(7 24 15 37)(8 23 16 36)(25 53 41 57)(26 52 42 64)(27 51 43 63)(28 50 44 62)(29 49 45 61)(30 56 46 60)(31 55 47 59)(32 54 48 58)
(1 49 15 59 5 53 11 63)(2 60 12 50 6 64 16 54)(3 51 9 61 7 55 13 57)(4 62 14 52 8 58 10 56)(17 32 40 42 21 28 36 46)(18 43 37 25 22 47 33 29)(19 26 34 44 23 30 38 48)(20 45 39 27 24 41 35 31)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,34)(18,39)(19,36)(20,33)(21,38)(22,35)(23,40)(24,37)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(49,61)(50,58)(51,63)(52,60)(53,57)(54,62)(55,59)(56,64), (1,22,9,35)(2,21,10,34)(3,20,11,33)(4,19,12,40)(5,18,13,39)(6,17,14,38)(7,24,15,37)(8,23,16,36)(25,53,41,57)(26,52,42,64)(27,51,43,63)(28,50,44,62)(29,49,45,61)(30,56,46,60)(31,55,47,59)(32,54,48,58), (1,49,15,59,5,53,11,63)(2,60,12,50,6,64,16,54)(3,51,9,61,7,55,13,57)(4,62,14,52,8,58,10,56)(17,32,40,42,21,28,36,46)(18,43,37,25,22,47,33,29)(19,26,34,44,23,30,38,48)(20,45,39,27,24,41,35,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,34)(18,39)(19,36)(20,33)(21,38)(22,35)(23,40)(24,37)(25,41)(26,46)(27,43)(28,48)(29,45)(30,42)(31,47)(32,44)(49,61)(50,58)(51,63)(52,60)(53,57)(54,62)(55,59)(56,64), (1,22,9,35)(2,21,10,34)(3,20,11,33)(4,19,12,40)(5,18,13,39)(6,17,14,38)(7,24,15,37)(8,23,16,36)(25,53,41,57)(26,52,42,64)(27,51,43,63)(28,50,44,62)(29,49,45,61)(30,56,46,60)(31,55,47,59)(32,54,48,58), (1,49,15,59,5,53,11,63)(2,60,12,50,6,64,16,54)(3,51,9,61,7,55,13,57)(4,62,14,52,8,58,10,56)(17,32,40,42,21,28,36,46)(18,43,37,25,22,47,33,29)(19,26,34,44,23,30,38,48)(20,45,39,27,24,41,35,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,9),(2,14),(3,11),(4,16),(5,13),(6,10),(7,15),(8,12),(17,34),(18,39),(19,36),(20,33),(21,38),(22,35),(23,40),(24,37),(25,41),(26,46),(27,43),(28,48),(29,45),(30,42),(31,47),(32,44),(49,61),(50,58),(51,63),(52,60),(53,57),(54,62),(55,59),(56,64)], [(1,22,9,35),(2,21,10,34),(3,20,11,33),(4,19,12,40),(5,18,13,39),(6,17,14,38),(7,24,15,37),(8,23,16,36),(25,53,41,57),(26,52,42,64),(27,51,43,63),(28,50,44,62),(29,49,45,61),(30,56,46,60),(31,55,47,59),(32,54,48,58)], [(1,49,15,59,5,53,11,63),(2,60,12,50,6,64,16,54),(3,51,9,61,7,55,13,57),(4,62,14,52,8,58,10,56),(17,32,40,42,21,28,36,46),(18,43,37,25,22,47,33,29),(19,26,34,44,23,30,38,48),(20,45,39,27,24,41,35,31)]])

Matrix representation of M4(2).13D4 in GL6(𝔽17)

1300000
040000
0032150
00516015
001101415
001414121
,
100000
010000
001000
000100
0032160
00516016
,
010000
1600000
0014300
003300
0012633
001110314
,
0160000
100000
005500
0012500
00165512
00121655

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,4,0,0,0,0,0,0,3,5,1,14,0,0,2,16,10,14,0,0,15,0,14,12,0,0,0,15,15,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,3,5,0,0,0,1,2,16,0,0,0,0,16,0,0,0,0,0,0,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,14,3,12,11,0,0,3,3,6,10,0,0,0,0,3,3,0,0,0,0,3,14],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,5,12,16,12,0,0,5,5,5,16,0,0,0,0,5,5,0,0,0,0,12,5] >;

M4(2).13D4 in GAP, Magma, Sage, TeX

M_4(2)._{13}D_4
% in TeX

G:=Group("M4(2).13D4");
// GroupNames label

G:=SmallGroup(128,796);
// by ID

G=gap.SmallGroup(128,796);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,168,141,64,422,387,352,2019,521,248,2804,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=a^6*b,b*a*b=a^5,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b*c^-1>;
// generators/relations

Export

Character table of M4(2).13D4 in TeX

׿
×
𝔽