p-group, metabelian, nilpotent (class 4), monomial
Aliases: (C2×Q8).2Q8, (C2×C4).2C42, (C2×Q8).40D4, C4.10D4⋊5C4, (C2×C42).13C4, (C22×C4).38D4, (C22×Q8).1C22, C22.15(C23⋊C4), C2.3(C42.C4), C2.3(C42.3C4), C23.162(C22⋊C4), C2.16(C23.9D4), C23.67C23.3C2, C22.5(C2.C42), (C2×C4⋊C4).10C4, (C2×C4).3(C4⋊C4), (C2×Q8).41(C2×C4), (C2×C4).3(C22⋊C4), (C22×C4).67(C2×C4), (C2×C4.10D4).5C2, SmallGroup(128,126)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C2×Q8).Q8
G = < a,b,c,d,e | a2=b4=d4=1, c2=b2, e2=ab-1d2, dbd-1=ab=ba, ece-1=ac=ca, ad=da, eae-1=ab2, cbc-1=b-1, be=eb, cd=dc, ede-1=cd-1 >
Subgroups: 192 in 86 conjugacy classes, 32 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2×Q8, C2.C42, C4.10D4, C4.10D4, C2×C42, C2×C4⋊C4, C2×M4(2), C22×Q8, C23.67C23, C2×C4.10D4, (C2×Q8).Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C23.9D4, C42.C4, C42.3C4, (C2×Q8).Q8
Character table of (C2×Q8).Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | i | 1 | -1 | -1 | 1 | i | -1 | -i | -i | 1 | i | -i | 1 | 1 | -i | -i | i | i | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | -i | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | -i | 1 | -1 | 1 | -1 | -i | 1 | i | i | -1 | i | -i | -i | i | 1 | -1 | -1 | 1 | i | -i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | i | 1 | -1 | -1 | 1 | i | -1 | -i | -i | 1 | i | -i | -1 | -1 | i | i | -i | -i | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | i | -i | i | -i | i | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | -i | 1 | -1 | 1 | -1 | -i | 1 | i | i | -1 | i | -i | i | -i | -1 | 1 | 1 | -1 | -i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -i | 1 | -1 | -1 | 1 | -i | -1 | i | i | 1 | -i | i | -1 | -1 | -i | -i | i | i | 1 | 1 | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | i | 1 | -1 | 1 | -1 | i | 1 | -i | -i | -1 | -i | i | i | -i | 1 | -1 | -1 | 1 | -i | i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -i | 1 | -1 | -1 | 1 | -i | -1 | i | i | 1 | -i | i | 1 | 1 | i | i | -i | -i | -1 | -1 | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | i | 1 | -1 | 1 | -1 | i | 1 | -i | -i | -1 | -i | i | -i | i | -1 | 1 | 1 | -1 | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | -4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C42.3C4, Schur index 2 |
ρ25 | 4 | -4 | -4 | 4 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42.C4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42.C4 |
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
(1 25 5 29)(2 26 6 30)(3 27 7 31)(4 28 8 32)(9 20 13 24)(10 21 14 17)(11 22 15 18)(12 23 16 19)
(1 21 5 17)(2 9 6 13)(3 19 7 23)(4 15 8 11)(10 29 14 25)(12 27 16 31)(18 28 22 32)(20 26 24 30)
(2 22 6 18)(3 29)(4 15 8 11)(7 25)(9 32 13 28)(10 23)(14 19)(20 26 24 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,20,13,24)(10,21,14,17)(11,22,15,18)(12,23,16,19), (1,21,5,17)(2,9,6,13)(3,19,7,23)(4,15,8,11)(10,29,14,25)(12,27,16,31)(18,28,22,32)(20,26,24,30), (2,22,6,18)(3,29)(4,15,8,11)(7,25)(9,32,13,28)(10,23)(14,19)(20,26,24,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21), (1,25,5,29)(2,26,6,30)(3,27,7,31)(4,28,8,32)(9,20,13,24)(10,21,14,17)(11,22,15,18)(12,23,16,19), (1,21,5,17)(2,9,6,13)(3,19,7,23)(4,15,8,11)(10,29,14,25)(12,27,16,31)(18,28,22,32)(20,26,24,30), (2,22,6,18)(3,29)(4,15,8,11)(7,25)(9,32,13,28)(10,23)(14,19)(20,26,24,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)], [(1,25,5,29),(2,26,6,30),(3,27,7,31),(4,28,8,32),(9,20,13,24),(10,21,14,17),(11,22,15,18),(12,23,16,19)], [(1,21,5,17),(2,9,6,13),(3,19,7,23),(4,15,8,11),(10,29,14,25),(12,27,16,31),(18,28,22,32),(20,26,24,30)], [(2,22,6,18),(3,29),(4,15,8,11),(7,25),(9,32,13,28),(10,23),(14,19),(20,26,24,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
Matrix representation of (C2×Q8).Q8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0] >;
(C2×Q8).Q8 in GAP, Magma, Sage, TeX
(C_2\times Q_8).Q_8
% in TeX
G:=Group("(C2xQ8).Q8");
// GroupNames label
G:=SmallGroup(128,126);
// by ID
G=gap.SmallGroup(128,126);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,352,1466,521,248,2804,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^4=1,c^2=b^2,e^2=a*b^-1*d^2,d*b*d^-1=a*b=b*a,e*c*e^-1=a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=b^-1,b*e=e*b,c*d=d*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export