p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).11D4, (C2×C8).48D4, C4.74C22≀C2, (C2×D4).113D4, (C2×Q8).104D4, C4.150(C4⋊D4), C22.C42⋊10C2, C2.20(D4.5D4), C2.27(D4.3D4), C23.279(C4○D4), (C22×C4).731C23, (C22×C8).169C22, (C22×Q8).71C22, C22.237(C4⋊D4), C23.36D4.11C2, C4.75(C22.D4), C22.13(C4.4D4), C2.25(C23.10D4), (C2×M4(2)).234C22, C22.14(C22.D4), (C2×C8.C4)⋊15C2, (C2×Q8⋊C4)⋊27C2, (C2×C4).1372(C2×D4), (C2×C8.C22).8C2, (C2×C4).347(C4○D4), (C2×C4.10D4)⋊25C2, (C2×C4⋊C4).130C22, (C22×C8)⋊C2.1C2, (C2×C4○D4).65C22, SmallGroup(128,784)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).11D4
G = < a,b,c,d | a8=b2=c4=d2=1, bab=a5, cac-1=ab, dad=a3, bc=cb, dbd=a4b, dcd=a6c-1 >
Subgroups: 272 in 131 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C22⋊C8, C4.10D4, D4⋊C4, Q8⋊C4, C8.C4, C2×C4⋊C4, C22×C8, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C22.C42, (C22×C8)⋊C2, C2×C4.10D4, C2×Q8⋊C4, C23.36D4, C2×C8.C4, C2×C8.C22, M4(2).11D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4, D4.3D4, D4.5D4, M4(2).11D4
Character table of M4(2).11D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 2 | -2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 2 | -2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 27)(2 32)(3 29)(4 26)(5 31)(6 28)(7 25)(8 30)(9 64)(10 61)(11 58)(12 63)(13 60)(14 57)(15 62)(16 59)(17 50)(18 55)(19 52)(20 49)(21 54)(22 51)(23 56)(24 53)(33 45)(34 42)(35 47)(36 44)(37 41)(38 46)(39 43)(40 48)
(1 57 22 43)(2 11 23 36)(3 63 24 41)(4 9 17 34)(5 61 18 47)(6 15 19 40)(7 59 20 45)(8 13 21 38)(10 55 35 31)(12 53 37 29)(14 51 39 27)(16 49 33 25)(26 64 50 42)(28 62 52 48)(30 60 54 46)(32 58 56 44)
(2 4)(3 7)(6 8)(9 38)(10 33)(11 36)(12 39)(13 34)(14 37)(15 40)(16 35)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(41 61)(42 64)(43 59)(44 62)(45 57)(46 60)(47 63)(48 58)(50 52)(51 55)(54 56)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,64)(10,61)(11,58)(12,63)(13,60)(14,57)(15,62)(16,59)(17,50)(18,55)(19,52)(20,49)(21,54)(22,51)(23,56)(24,53)(33,45)(34,42)(35,47)(36,44)(37,41)(38,46)(39,43)(40,48), (1,57,22,43)(2,11,23,36)(3,63,24,41)(4,9,17,34)(5,61,18,47)(6,15,19,40)(7,59,20,45)(8,13,21,38)(10,55,35,31)(12,53,37,29)(14,51,39,27)(16,49,33,25)(26,64,50,42)(28,62,52,48)(30,60,54,46)(32,58,56,44), (2,4)(3,7)(6,8)(9,38)(10,33)(11,36)(12,39)(13,34)(14,37)(15,40)(16,35)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(41,61)(42,64)(43,59)(44,62)(45,57)(46,60)(47,63)(48,58)(50,52)(51,55)(54,56)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,27)(2,32)(3,29)(4,26)(5,31)(6,28)(7,25)(8,30)(9,64)(10,61)(11,58)(12,63)(13,60)(14,57)(15,62)(16,59)(17,50)(18,55)(19,52)(20,49)(21,54)(22,51)(23,56)(24,53)(33,45)(34,42)(35,47)(36,44)(37,41)(38,46)(39,43)(40,48), (1,57,22,43)(2,11,23,36)(3,63,24,41)(4,9,17,34)(5,61,18,47)(6,15,19,40)(7,59,20,45)(8,13,21,38)(10,55,35,31)(12,53,37,29)(14,51,39,27)(16,49,33,25)(26,64,50,42)(28,62,52,48)(30,60,54,46)(32,58,56,44), (2,4)(3,7)(6,8)(9,38)(10,33)(11,36)(12,39)(13,34)(14,37)(15,40)(16,35)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(41,61)(42,64)(43,59)(44,62)(45,57)(46,60)(47,63)(48,58)(50,52)(51,55)(54,56) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,27),(2,32),(3,29),(4,26),(5,31),(6,28),(7,25),(8,30),(9,64),(10,61),(11,58),(12,63),(13,60),(14,57),(15,62),(16,59),(17,50),(18,55),(19,52),(20,49),(21,54),(22,51),(23,56),(24,53),(33,45),(34,42),(35,47),(36,44),(37,41),(38,46),(39,43),(40,48)], [(1,57,22,43),(2,11,23,36),(3,63,24,41),(4,9,17,34),(5,61,18,47),(6,15,19,40),(7,59,20,45),(8,13,21,38),(10,55,35,31),(12,53,37,29),(14,51,39,27),(16,49,33,25),(26,64,50,42),(28,62,52,48),(30,60,54,46),(32,58,56,44)], [(2,4),(3,7),(6,8),(9,38),(10,33),(11,36),(12,39),(13,34),(14,37),(15,40),(16,35),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(41,61),(42,64),(43,59),(44,62),(45,57),(46,60),(47,63),(48,58),(50,52),(51,55),(54,56)]])
Matrix representation of M4(2).11D4 ►in GL6(𝔽17)
16 | 15 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 4 | 13 |
0 | 0 | 0 | 13 | 4 | 13 |
0 | 0 | 15 | 2 | 0 | 4 |
0 | 0 | 15 | 2 | 13 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
13 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 6 |
0 | 0 | 6 | 0 | 6 | 0 |
0 | 0 | 0 | 14 | 0 | 11 |
0 | 0 | 14 | 0 | 11 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 16 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,1,0,0,0,0,15,1,0,0,0,0,0,0,4,0,15,15,0,0,0,13,2,2,0,0,4,4,0,13,0,0,13,13,4,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,13,0,0,0,0,0,13,0,0,0,0,0,0,0,6,0,14,0,0,6,0,14,0,0,0,0,6,0,11,0,0,6,0,11,0],[1,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,1,0,0,0,0,1,0,16,0,0,0,0,1,0,0,0,0,0,0,16] >;
M4(2).11D4 in GAP, Magma, Sage, TeX
M_4(2)._{11}D_4
% in TeX
G:=Group("M4(2).11D4");
// GroupNames label
G:=SmallGroup(128,784);
// by ID
G=gap.SmallGroup(128,784);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,456,422,387,58,2019,1018,248,2804,1411,172,4037,1027]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^5,c*a*c^-1=a*b,d*a*d=a^3,b*c=c*b,d*b*d=a^4*b,d*c*d=a^6*c^-1>;
// generators/relations
Export