p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).6D4, (C2×C8).44D4, (C2×D4).98D4, (C2×Q8).89D4, C4.15C22≀C2, (C22×Q16)⋊3C2, C4.35(C4⋊1D4), C4.C42⋊10C2, C2.18(D4.5D4), C23.274(C4○D4), C22.63(C4⋊D4), C2.25(C23⋊2D4), (C22×C4).718C23, (C22×C8).111C22, (C22×Q8).59C22, (C2×M4(2)).23C22, (C2×C4).256(C2×D4), (C2×C4.10D4)⋊4C2, (C2×C8.C22).6C2, (C22×C8)⋊C2.5C2, (C2×C4○D4).55C22, SmallGroup(128,752)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).6D4
G = < a,b,c,d | a8=b2=1, c4=d2=a4, bab=a5, cac-1=a-1b, dad-1=ab, cbc-1=a4b, bd=db, dcd-1=c3 >
Subgroups: 344 in 171 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C2×C8, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C22⋊C8, C4.10D4, C22×C8, C2×M4(2), C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C4.C42, (C22×C8)⋊C2, C2×C4.10D4, C22×Q16, C2×C8.C22, M4(2).6D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C23⋊2D4, D4.5D4, M4(2).6D4
Character table of M4(2).6D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ24 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 21)(2 18)(3 23)(4 20)(5 17)(6 22)(7 19)(8 24)(9 36)(10 33)(11 38)(12 35)(13 40)(14 37)(15 34)(16 39)(25 53)(26 50)(27 55)(28 52)(29 49)(30 54)(31 51)(32 56)(41 63)(42 60)(43 57)(44 62)(45 59)(46 64)(47 61)(48 58)
(1 57 12 26 5 61 16 30)(2 46 13 53 6 42 9 49)(3 59 14 28 7 63 10 32)(4 48 15 55 8 44 11 51)(17 43 39 50 21 47 35 54)(18 60 40 29 22 64 36 25)(19 45 33 52 23 41 37 56)(20 62 34 31 24 58 38 27)
(1 57 5 61)(2 48 6 44)(3 63 7 59)(4 46 8 42)(9 55 13 51)(10 32 14 28)(11 53 15 49)(12 30 16 26)(17 47 21 43)(18 58 22 62)(19 45 23 41)(20 64 24 60)(25 34 29 38)(27 40 31 36)(33 56 37 52)(35 54 39 50)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21)(2,18)(3,23)(4,20)(5,17)(6,22)(7,19)(8,24)(9,36)(10,33)(11,38)(12,35)(13,40)(14,37)(15,34)(16,39)(25,53)(26,50)(27,55)(28,52)(29,49)(30,54)(31,51)(32,56)(41,63)(42,60)(43,57)(44,62)(45,59)(46,64)(47,61)(48,58), (1,57,12,26,5,61,16,30)(2,46,13,53,6,42,9,49)(3,59,14,28,7,63,10,32)(4,48,15,55,8,44,11,51)(17,43,39,50,21,47,35,54)(18,60,40,29,22,64,36,25)(19,45,33,52,23,41,37,56)(20,62,34,31,24,58,38,27), (1,57,5,61)(2,48,6,44)(3,63,7,59)(4,46,8,42)(9,55,13,51)(10,32,14,28)(11,53,15,49)(12,30,16,26)(17,47,21,43)(18,58,22,62)(19,45,23,41)(20,64,24,60)(25,34,29,38)(27,40,31,36)(33,56,37,52)(35,54,39,50)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21)(2,18)(3,23)(4,20)(5,17)(6,22)(7,19)(8,24)(9,36)(10,33)(11,38)(12,35)(13,40)(14,37)(15,34)(16,39)(25,53)(26,50)(27,55)(28,52)(29,49)(30,54)(31,51)(32,56)(41,63)(42,60)(43,57)(44,62)(45,59)(46,64)(47,61)(48,58), (1,57,12,26,5,61,16,30)(2,46,13,53,6,42,9,49)(3,59,14,28,7,63,10,32)(4,48,15,55,8,44,11,51)(17,43,39,50,21,47,35,54)(18,60,40,29,22,64,36,25)(19,45,33,52,23,41,37,56)(20,62,34,31,24,58,38,27), (1,57,5,61)(2,48,6,44)(3,63,7,59)(4,46,8,42)(9,55,13,51)(10,32,14,28)(11,53,15,49)(12,30,16,26)(17,47,21,43)(18,58,22,62)(19,45,23,41)(20,64,24,60)(25,34,29,38)(27,40,31,36)(33,56,37,52)(35,54,39,50) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,21),(2,18),(3,23),(4,20),(5,17),(6,22),(7,19),(8,24),(9,36),(10,33),(11,38),(12,35),(13,40),(14,37),(15,34),(16,39),(25,53),(26,50),(27,55),(28,52),(29,49),(30,54),(31,51),(32,56),(41,63),(42,60),(43,57),(44,62),(45,59),(46,64),(47,61),(48,58)], [(1,57,12,26,5,61,16,30),(2,46,13,53,6,42,9,49),(3,59,14,28,7,63,10,32),(4,48,15,55,8,44,11,51),(17,43,39,50,21,47,35,54),(18,60,40,29,22,64,36,25),(19,45,33,52,23,41,37,56),(20,62,34,31,24,58,38,27)], [(1,57,5,61),(2,48,6,44),(3,63,7,59),(4,46,8,42),(9,55,13,51),(10,32,14,28),(11,53,15,49),(12,30,16,26),(17,47,21,43),(18,58,22,62),(19,45,23,41),(20,64,24,60),(25,34,29,38),(27,40,31,36),(33,56,37,52),(35,54,39,50)]])
Matrix representation of M4(2).6D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 4 | 4 |
0 | 0 | 0 | 13 | 0 | 13 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 15 |
0 | 0 | 16 | 0 | 16 | 1 |
0 | 0 | 16 | 16 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 2 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 7 |
0 | 0 | 12 | 0 | 0 | 10 |
0 | 0 | 0 | 5 | 5 | 5 |
0 | 0 | 5 | 5 | 12 | 12 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 10 | 7 |
0 | 0 | 12 | 0 | 0 | 10 |
0 | 0 | 0 | 5 | 12 | 5 |
0 | 0 | 5 | 5 | 5 | 12 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,13,0,0,4,13,13,0,0,0,4,0,0,0,0,0,4,13,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,16,16,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,15,1,1,16],[16,16,0,0,0,0,2,1,0,0,0,0,0,0,0,12,0,5,0,0,0,0,5,5,0,0,7,0,5,12,0,0,7,10,5,12],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,10,12,0,5,0,0,0,0,5,5,0,0,10,0,12,5,0,0,7,10,5,12] >;
M4(2).6D4 in GAP, Magma, Sage, TeX
M_4(2)._6D_4
% in TeX
G:=Group("M4(2).6D4");
// GroupNames label
G:=SmallGroup(128,752);
// by ID
G=gap.SmallGroup(128,752);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,352,2019,1018,521,248,2804,718,172,4037,2028,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^4=d^2=a^4,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export