p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).9D4, C4.71C22≀C2, (C2×D4).110D4, (C2×Q8).101D4, C4.29(C4⋊D4), M4(2).C4⋊5C2, (C22×C4).42C23, M4(2)⋊4C4⋊11C2, C23.132(C4○D4), C23.38D4⋊30C2, C22.70(C4⋊D4), C42⋊C22.1C2, (C22×Q8).70C22, C42⋊C2.62C22, C4.24(C22.D4), C22.11(C4.4D4), C2.22(C23.10D4), (C2×M4(2)).231C22, C22.58(C22.D4), M4(2).8C22.8C2, (C2×C4).262(C2×D4), (C2×C4.10D4)⋊6C2, (C2×C8.C22).7C2, (C2×C4).345(C4○D4), (C2×C4○D4).62C22, SmallGroup(128,781)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).9D4
G = < a,b,c,d | a8=b2=1, c4=d2=a4, bab=a5, cac-1=a-1, dad-1=a5b, cbc-1=a4b, bd=db, dcd-1=c3 >
Subgroups: 264 in 127 conjugacy classes, 40 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4.D4, C4.10D4, Q8⋊C4, C4≀C2, C8.C4, C42⋊C2, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, M4(2)⋊4C4, C2×C4.10D4, M4(2).8C22, C23.38D4, C42⋊C22, M4(2).C4, C2×C8.C22, M4(2).9D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4, M4(2).9D4
Character table of M4(2).9D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | -2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 30)(2 27)(3 32)(4 29)(5 26)(6 31)(7 28)(8 25)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
(1 18 32 9 5 22 28 13)(2 17 25 16 6 21 29 12)(3 24 26 15 7 20 30 11)(4 23 27 14 8 19 31 10)
(1 9 5 13)(2 21 6 17)(3 15 7 11)(4 19 8 23)(10 27 14 31)(12 25 16 29)(18 28 22 32)(20 26 24 30)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,18,32,9,5,22,28,13)(2,17,25,16,6,21,29,12)(3,24,26,15,7,20,30,11)(4,23,27,14,8,19,31,10), (1,9,5,13)(2,21,6,17)(3,15,7,11)(4,19,8,23)(10,27,14,31)(12,25,16,29)(18,28,22,32)(20,26,24,30)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,18,32,9,5,22,28,13)(2,17,25,16,6,21,29,12)(3,24,26,15,7,20,30,11)(4,23,27,14,8,19,31,10), (1,9,5,13)(2,21,6,17)(3,15,7,11)(4,19,8,23)(10,27,14,31)(12,25,16,29)(18,28,22,32)(20,26,24,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,30),(2,27),(3,32),(4,29),(5,26),(6,31),(7,28),(8,25),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)], [(1,18,32,9,5,22,28,13),(2,17,25,16,6,21,29,12),(3,24,26,15,7,20,30,11),(4,23,27,14,8,19,31,10)], [(1,9,5,13),(2,21,6,17),(3,15,7,11),(4,19,8,23),(10,27,14,31),(12,25,16,29),(18,28,22,32),(20,26,24,30)]])
Matrix representation of M4(2).9D4 ►in GL8(𝔽17)
7 | 0 | 7 | 0 | 6 | 8 | 6 | 8 |
3 | 0 | 3 | 0 | 16 | 7 | 16 | 7 |
11 | 0 | 6 | 0 | 11 | 9 | 6 | 8 |
12 | 0 | 5 | 0 | 1 | 10 | 16 | 7 |
9 | 3 | 10 | 14 | 12 | 16 | 14 | 13 |
5 | 4 | 14 | 13 | 12 | 16 | 14 | 13 |
0 | 3 | 9 | 3 | 5 | 1 | 14 | 13 |
13 | 4 | 5 | 4 | 5 | 1 | 14 | 13 |
0 | 0 | 16 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 11 | 0 | 10 | 0 | 0 | 0 | 16 |
0 | 11 | 7 | 10 | 0 | 0 | 1 | 0 |
0 | 7 | 11 | 6 | 0 | 1 | 0 | 0 |
10 | 7 | 0 | 6 | 16 | 0 | 0 | 0 |
7 | 9 | 10 | 8 | 0 | 0 | 0 | 0 |
3 | 10 | 14 | 7 | 0 | 0 | 0 | 0 |
7 | 9 | 7 | 9 | 0 | 0 | 0 | 0 |
3 | 10 | 3 | 10 | 0 | 0 | 0 | 0 |
7 | 4 | 1 | 16 | 13 | 3 | 4 | 14 |
8 | 4 | 0 | 16 | 3 | 4 | 14 | 13 |
13 | 4 | 5 | 1 | 13 | 3 | 13 | 3 |
0 | 4 | 9 | 1 | 3 | 4 | 3 | 4 |
7 | 9 | 10 | 8 | 0 | 0 | 0 | 0 |
3 | 10 | 14 | 7 | 0 | 0 | 0 | 0 |
10 | 8 | 10 | 8 | 0 | 0 | 0 | 0 |
14 | 7 | 14 | 7 | 0 | 0 | 0 | 0 |
16 | 1 | 10 | 13 | 13 | 3 | 4 | 14 |
0 | 1 | 9 | 13 | 3 | 4 | 14 | 13 |
12 | 16 | 4 | 13 | 4 | 14 | 4 | 14 |
8 | 16 | 0 | 13 | 14 | 13 | 14 | 13 |
G:=sub<GL(8,GF(17))| [7,3,11,12,9,5,0,13,0,0,0,0,3,4,3,4,7,3,6,5,10,14,9,5,0,0,0,0,14,13,3,4,6,16,11,1,12,12,5,5,8,7,9,10,16,16,1,1,6,16,6,16,14,14,14,14,8,7,8,7,13,13,13,13],[0,0,1,1,6,0,0,10,0,0,15,16,11,11,7,7,16,16,0,0,0,7,11,0,2,1,0,0,10,10,6,6,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0],[7,3,7,3,7,8,13,0,9,10,9,10,4,4,4,4,10,14,7,3,1,0,5,9,8,7,9,10,16,16,1,1,0,0,0,0,13,3,13,3,0,0,0,0,3,4,3,4,0,0,0,0,4,14,13,3,0,0,0,0,14,13,3,4],[7,3,10,14,16,0,12,8,9,10,8,7,1,1,16,16,10,14,10,14,10,9,4,0,8,7,8,7,13,13,13,13,0,0,0,0,13,3,4,14,0,0,0,0,3,4,14,13,0,0,0,0,4,14,4,14,0,0,0,0,14,13,14,13] >;
M4(2).9D4 in GAP, Magma, Sage, TeX
M_4(2)._9D_4
% in TeX
G:=Group("M4(2).9D4");
// GroupNames label
G:=SmallGroup(128,781);
// by ID
G=gap.SmallGroup(128,781);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,448,141,422,387,58,2019,1018,248,2804,172,1027]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^4=d^2=a^4,b*a*b=a^5,c*a*c^-1=a^-1,d*a*d^-1=a^5*b,c*b*c^-1=a^4*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export