direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C4.10D4, M4(2).7C22, C4.45(C2×D4), (C2×Q8).6C4, (C2×C4).121D4, (C22×C4).5C4, (C2×C4).2C23, C23.30(C2×C4), (C22×Q8).3C2, C4.11(C22⋊C4), C22.9(C22×C4), (C2×Q8).38C22, (C2×M4(2)).11C2, (C22×C4).32C22, C22.31(C22⋊C4), (C2×C4).6(C2×C4), C2.15(C2×C22⋊C4), SmallGroup(64,93)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4.10D4
G = < a,b,c,d | a2=b4=1, c4=b2, d2=cbc-1=b-1, ab=ba, ac=ca, ad=da, bd=db, dcd-1=b-1c3 >
Subgroups: 105 in 73 conjugacy classes, 41 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C4.10D4, C2×M4(2), C22×Q8, C2×C4.10D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.10D4, C2×C22⋊C4, C2×C4.10D4
Character table of C2×C4.10D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | -i | -i | i | i | -i | i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | -i | -i | i | i | -i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | i | i | i | -i | -i | i | -i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | i | i | -i | -i | i | -i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 27 5 31)(2 32 6 28)(3 29 7 25)(4 26 8 30)(9 20 13 24)(10 17 14 21)(11 22 15 18)(12 19 16 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 20 31 9 5 24 27 13)(2 16 28 19 6 12 32 23)(3 18 25 15 7 22 29 11)(4 14 30 17 8 10 26 21)
G:=sub<Sym(32)| (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,27,5,31)(2,32,6,28)(3,29,7,25)(4,26,8,30)(9,20,13,24)(10,17,14,21)(11,22,15,18)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,20,31,9,5,24,27,13)(2,16,28,19,6,12,32,23)(3,18,25,15,7,22,29,11)(4,14,30,17,8,10,26,21)>;
G:=Group( (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,27,5,31)(2,32,6,28)(3,29,7,25)(4,26,8,30)(9,20,13,24)(10,17,14,21)(11,22,15,18)(12,19,16,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,20,31,9,5,24,27,13)(2,16,28,19,6,12,32,23)(3,18,25,15,7,22,29,11)(4,14,30,17,8,10,26,21) );
G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,27,5,31),(2,32,6,28),(3,29,7,25),(4,26,8,30),(9,20,13,24),(10,17,14,21),(11,22,15,18),(12,19,16,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,20,31,9,5,24,27,13),(2,16,28,19,6,12,32,23),(3,18,25,15,7,22,29,11),(4,14,30,17,8,10,26,21)]])
C2×C4.10D4 is a maximal subgroup of
(C2×Q8).Q8 C4.C22≀C2 (C23×C4).C4 2- 1+4⋊2C4 C42.97D4 (C2×Q8).211D4 C4.10D4⋊2C4 C4⋊Q8⋊15C4 C4.4D4⋊13C4 M4(2).45D4 M4(2).46D4 M4(2).49D4 C42.7D4 M4(2).50D4 C4.10D4⋊3C4 C42.114D4 C42.115D4 M4(2).31D4 M4(2).33D4 C42.129D4 C42.130D4 M4(2).5D4 M4(2).6D4 M4(2).7D4 C4⋊C4.97D4 C4⋊C4.98D4 M4(2).9D4 M4(2).11D4 M4(2).13D4 M4(2).15D4 (C2×C8).6D4 C4⋊Q8.C4 M4(2).25C23 M4(2).C23 M4(2).38D4 (C2×Q8).7F5
C2×C4.10D4 is a maximal quotient of
C42.394D4 (C2×C4)⋊M4(2) C42.44D4 C42.396D4 C24.45(C2×C4) C42.406D4 C42.408D4 C42.68D4 C42.71D4 C42.74D4 C42.412D4 C42.414D4 C42.416D4 C42.81D4 C42.83D4 C42.88D4 C4.C22≀C2 C42.97D4 (C22×C4).275D4 M4(2).45D4 C42.114D4 M4(2)⋊8Q8 (C2×Q8).7F5
Matrix representation of C2×C4.10D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 2 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | 16 |
0 | 0 | 0 | 16 | 1 | 0 |
0 | 0 | 16 | 0 | 1 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 3 | 15 |
0 | 0 | 7 | 0 | 11 | 9 |
0 | 0 | 7 | 10 | 10 | 16 |
0 | 0 | 8 | 16 | 10 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,16,16,0,0,0,2,1,1,1,0,0,0,0,0,16,0,0,0,0,1,0],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,16,0,0,0,0,16,0,0,0,2,1,1,1,0,0,0,16,0,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,8,7,7,8,0,0,0,0,10,16,0,0,3,11,10,10,0,0,15,9,16,16] >;
C2×C4.10D4 in GAP, Magma, Sage, TeX
C_2\times C_4._{10}D_4
% in TeX
G:=Group("C2xC4.10D4");
// GroupNames label
G:=SmallGroup(64,93);
// by ID
G=gap.SmallGroup(64,93);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,199,963,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=1,c^4=b^2,d^2=c*b*c^-1=b^-1,a*b=b*a,a*c=c*a,a*d=d*a,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations
Export