Copied to
clipboard

G = C23.231C24order 128 = 27

84th central extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.231C24, C24.556C23, C22.672+ 1+4, D46(C4⋊C4), (C4×D4)⋊22C4, C4224(C2×C4), (C2×D4).36Q8, (C2×D4).342D4, C428C417C2, C2.4(D45D4), C2.3(D43Q8), C23.416(C2×D4), C23.114(C2×Q8), D43(C2.C42), (C23×C4).53C22, C23.7Q824C2, C23.8Q814C2, C22.39(C22×Q8), C22.122(C23×C4), (C2×C42).430C22, C23.130(C22×C4), C22.106(C22×D4), (C22×C4).1246C23, (C22×D4).610C22, C23.65C2323C2, C2.26(C22.11C24), C2.C42.475C22, (C4×C4⋊C4)⋊37C2, C4⋊C444(C2×C4), C4.17(C2×C4⋊C4), (C2×C4×D4).34C2, C2.28(C4×C4○D4), C22.1(C2×C4⋊C4), C22⋊C441(C2×C4), (C22×C4)⋊32(C2×C4), C2.15(C22×C4⋊C4), (C2×C4).300(C2×Q8), (C2×D4).244(C2×C4), (C2×C4).1070(C2×D4), (C2×C4).720(C4○D4), (C2×C4⋊C4).187C22, (C2×C4).491(C22×C4), C22.116(C2×C4○D4), (C2×C2.C42)⋊19C2, (C2×D4)3(C2.C42), (C2×C22⋊C4).439C22, SmallGroup(128,1081)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.231C24
C1C2C22C23C24C23×C4C2×C4×D4 — C23.231C24
C1C22 — C23.231C24
C1C23 — C23.231C24
C1C23 — C23.231C24

Generators and relations for C23.231C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=d, g2=cb=bc, faf=ab=ba, ac=ca, ad=da, ae=ea, ag=ga, bd=db, fef=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >

Subgroups: 604 in 352 conjugacy classes, 184 normal (20 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×4], C4 [×18], C22 [×3], C22 [×12], C22 [×24], C2×C4 [×18], C2×C4 [×54], D4 [×16], C23, C23 [×12], C23 [×8], C42 [×4], C42 [×4], C22⋊C4 [×8], C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×12], C22×C4 [×3], C22×C4 [×18], C22×C4 [×24], C2×D4 [×12], C24 [×2], C2.C42 [×2], C2.C42 [×8], C2×C42, C2×C42 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4, C2×C4⋊C4 [×8], C4×D4 [×8], C4×D4 [×8], C23×C4 [×6], C22×D4, C2×C2.C42 [×2], C4×C4⋊C4, C23.7Q8 [×2], C428C4, C23.8Q8 [×4], C23.65C23 [×2], C2×C4×D4, C2×C4×D4 [×2], C23.231C24
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], Q8 [×4], C23 [×15], C4⋊C4 [×16], C22×C4 [×14], C2×D4 [×6], C2×Q8 [×6], C4○D4 [×4], C24, C2×C4⋊C4 [×12], C23×C4, C22×D4, C22×Q8, C2×C4○D4 [×2], 2+ 1+4 [×2], C22×C4⋊C4, C4×C4○D4, C22.11C24, D45D4 [×2], D43Q8 [×2], C23.231C24

Smallest permutation representation of C23.231C24
On 64 points
Generators in S64
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 11)(10 12)(13 15)(14 16)(17 47)(18 48)(19 45)(20 46)(21 23)(22 24)(25 27)(26 28)(29 59)(30 60)(31 57)(32 58)(33 61)(34 62)(35 63)(36 64)(41 43)(42 44)(49 51)(50 52)(53 55)(54 56)
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45)(2 18)(3 47)(4 20)(5 16)(6 41)(7 14)(8 43)(9 17)(10 46)(11 19)(12 48)(13 39)(15 37)(21 29)(22 58)(23 31)(24 60)(25 35)(26 62)(27 33)(28 64)(30 50)(32 52)(34 56)(36 54)(38 44)(40 42)(49 57)(51 59)(53 61)(55 63)
(1 27 23 41)(2 14 24 56)(3 25 21 43)(4 16 22 54)(5 58 36 20)(6 45 33 31)(7 60 34 18)(8 47 35 29)(9 55 51 13)(10 42 52 28)(11 53 49 15)(12 44 50 26)(17 63 59 39)(19 61 57 37)(30 62 48 38)(32 64 46 40)

G:=sub<Sym(64)| (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45)(2,18)(3,47)(4,20)(5,16)(6,41)(7,14)(8,43)(9,17)(10,46)(11,19)(12,48)(13,39)(15,37)(21,29)(22,58)(23,31)(24,60)(25,35)(26,62)(27,33)(28,64)(30,50)(32,52)(34,56)(36,54)(38,44)(40,42)(49,57)(51,59)(53,61)(55,63), (1,27,23,41)(2,14,24,56)(3,25,21,43)(4,16,22,54)(5,58,36,20)(6,45,33,31)(7,60,34,18)(8,47,35,29)(9,55,51,13)(10,42,52,28)(11,53,49,15)(12,44,50,26)(17,63,59,39)(19,61,57,37)(30,62,48,38)(32,64,46,40)>;

G:=Group( (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45)(2,18)(3,47)(4,20)(5,16)(6,41)(7,14)(8,43)(9,17)(10,46)(11,19)(12,48)(13,39)(15,37)(21,29)(22,58)(23,31)(24,60)(25,35)(26,62)(27,33)(28,64)(30,50)(32,52)(34,56)(36,54)(38,44)(40,42)(49,57)(51,59)(53,61)(55,63), (1,27,23,41)(2,14,24,56)(3,25,21,43)(4,16,22,54)(5,58,36,20)(6,45,33,31)(7,60,34,18)(8,47,35,29)(9,55,51,13)(10,42,52,28)(11,53,49,15)(12,44,50,26)(17,63,59,39)(19,61,57,37)(30,62,48,38)(32,64,46,40) );

G=PermutationGroup([(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,11),(10,12),(13,15),(14,16),(17,47),(18,48),(19,45),(20,46),(21,23),(22,24),(25,27),(26,28),(29,59),(30,60),(31,57),(32,58),(33,61),(34,62),(35,63),(36,64),(41,43),(42,44),(49,51),(50,52),(53,55),(54,56)], [(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45),(2,18),(3,47),(4,20),(5,16),(6,41),(7,14),(8,43),(9,17),(10,46),(11,19),(12,48),(13,39),(15,37),(21,29),(22,58),(23,31),(24,60),(25,35),(26,62),(27,33),(28,64),(30,50),(32,52),(34,56),(36,54),(38,44),(40,42),(49,57),(51,59),(53,61),(55,63)], [(1,27,23,41),(2,14,24,56),(3,25,21,43),(4,16,22,54),(5,58,36,20),(6,45,33,31),(7,60,34,18),(8,47,35,29),(9,55,51,13),(10,42,52,28),(11,53,49,15),(12,44,50,26),(17,63,59,39),(19,61,57,37),(30,62,48,38),(32,64,46,40)])

50 conjugacy classes

class 1 2A···2G2H···2O4A···4P4Q···4AH
order12···22···24···44···4
size11···12···22···24···4

50 irreducible representations

dim1111111112224
type+++++++++-+
imageC1C2C2C2C2C2C2C2C4D4Q8C4○D42+ 1+4
kernelC23.231C24C2×C2.C42C4×C4⋊C4C23.7Q8C428C4C23.8Q8C23.65C23C2×C4×D4C4×D4C2×D4C2×D4C2×C4C22
# reps12121423164482

Matrix representation of C23.231C24 in GL5(𝔽5)

10000
01000
00100
00040
00031
,
10000
01000
00100
00040
00004
,
10000
04000
00400
00010
00001
,
40000
01000
00100
00040
00004
,
20000
00100
01000
00030
00012
,
40000
01000
00100
00041
00001
,
40000
00100
04000
00020
00002

G:=sub<GL(5,GF(5))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,3,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[2,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,3,1,0,0,0,0,2],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,1,1],[4,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,2] >;

C23.231C24 in GAP, Magma, Sage, TeX

C_2^3._{231}C_2^4
% in TeX

G:=Group("C2^3.231C2^4");
// GroupNames label

G:=SmallGroup(128,1081);
// by ID

G=gap.SmallGroup(128,1081);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,268,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=d,g^2=c*b=b*c,f*a*f=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*g=g*a,b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations

׿
×
𝔽