Copied to
clipboard

G = C23.356C24order 128 = 27

73rd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.356C24, C24.277C23, C22.1632+ 1+4, C2.22D42, C4⋊C441D4, C22⋊C438D4, C232D414C2, C23.169(C2×D4), C2.42(D45D4), C2.16(Q86D4), C23.27(C4○D4), (C23×C4).82C22, C23.Q813C2, C23.8Q846C2, C23.23D441C2, (C22×C4).811C23, (C2×C42).499C22, C22.236(C22×D4), C24.3C2240C2, C24.C2241C2, (C22×D4).515C22, C23.63C2338C2, C2.28(C22.19C24), C2.14(C22.32C24), C2.C42.113C22, C2.20(C22.47C24), (C2×C4×D4)⋊34C2, (C2×C4⋊D4)⋊12C2, (C2×C4).335(C2×D4), (C2×C4).111(C4○D4), (C2×C4⋊C4).238C22, C22.233(C2×C4○D4), (C2×C22.D4)⋊13C2, (C2×C22⋊C4).133C22, SmallGroup(128,1188)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.356C24
C1C2C22C23C22×C4C23×C4C2×C4×D4 — C23.356C24
C1C23 — C23.356C24
C1C23 — C23.356C24
C1C23 — C23.356C24

Generators and relations for C23.356C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=a, g2=b, ab=ba, ac=ca, ede=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 756 in 359 conjugacy classes, 108 normal (82 characteristic)
C1, C2 [×7], C2 [×7], C4 [×17], C22 [×7], C22 [×37], C2×C4 [×12], C2×C4 [×39], D4 [×32], C23, C23 [×6], C23 [×25], C42 [×4], C22⋊C4 [×4], C22⋊C4 [×21], C4⋊C4 [×4], C4⋊C4 [×7], C22×C4 [×11], C22×C4 [×15], C2×D4 [×31], C24 [×4], C2.C42 [×6], C2×C42 [×2], C2×C22⋊C4 [×13], C2×C4⋊C4 [×5], C4×D4 [×8], C4⋊D4 [×4], C22.D4 [×4], C23×C4 [×3], C22×D4 [×6], C23.8Q8, C23.23D4 [×2], C23.63C23, C24.C22 [×2], C24.3C22, C232D4 [×3], C23.Q8, C2×C4×D4 [×2], C2×C4⋊D4, C2×C22.D4, C23.356C24
Quotients: C1, C2 [×15], C22 [×35], D4 [×8], C23 [×15], C2×D4 [×12], C4○D4 [×6], C24, C22×D4 [×2], C2×C4○D4 [×3], 2+ 1+4 [×2], C22.19C24 [×2], C22.32C24, D42, D45D4, Q86D4, C22.47C24, C23.356C24

Smallest permutation representation of C23.356C24
On 64 points
Generators in S64
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 11)(2 12)(3 9)(4 10)(5 27)(6 28)(7 25)(8 26)(13 19)(14 20)(15 17)(16 18)(21 45)(22 46)(23 47)(24 48)(29 62)(30 63)(31 64)(32 61)(33 53)(34 54)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(41 49)(42 50)(43 51)(44 52)
(1 51)(2 52)(3 49)(4 50)(5 56)(6 53)(7 54)(8 55)(9 41)(10 42)(11 43)(12 44)(13 46)(14 47)(15 48)(16 45)(17 24)(18 21)(19 22)(20 23)(25 34)(26 35)(27 36)(28 33)(29 57)(30 58)(31 59)(32 60)(37 62)(38 63)(39 64)(40 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 53)(2 56)(3 55)(4 54)(5 52)(6 51)(7 50)(8 49)(9 35)(10 34)(11 33)(12 36)(13 57)(14 60)(15 59)(16 58)(17 39)(18 38)(19 37)(20 40)(21 63)(22 62)(23 61)(24 64)(25 42)(26 41)(27 44)(28 43)(29 46)(30 45)(31 48)(32 47)
(1 17)(2 16)(3 19)(4 14)(5 58)(6 39)(7 60)(8 37)(9 13)(10 20)(11 15)(12 18)(21 44)(22 49)(23 42)(24 51)(25 40)(26 57)(27 38)(28 59)(29 35)(30 56)(31 33)(32 54)(34 61)(36 63)(41 46)(43 48)(45 52)(47 50)(53 64)(55 62)
(1 18 11 16)(2 17 12 15)(3 20 9 14)(4 19 10 13)(5 64 27 31)(6 63 28 30)(7 62 25 29)(8 61 26 32)(21 43 45 51)(22 42 46 50)(23 41 47 49)(24 44 48 52)(33 58 53 38)(34 57 54 37)(35 60 55 40)(36 59 56 39)

G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,19)(14,20)(15,17)(16,18)(21,45)(22,46)(23,47)(24,48)(29,62)(30,63)(31,64)(32,61)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,49)(42,50)(43,51)(44,52), (1,51)(2,52)(3,49)(4,50)(5,56)(6,53)(7,54)(8,55)(9,41)(10,42)(11,43)(12,44)(13,46)(14,47)(15,48)(16,45)(17,24)(18,21)(19,22)(20,23)(25,34)(26,35)(27,36)(28,33)(29,57)(30,58)(31,59)(32,60)(37,62)(38,63)(39,64)(40,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53)(2,56)(3,55)(4,54)(5,52)(6,51)(7,50)(8,49)(9,35)(10,34)(11,33)(12,36)(13,57)(14,60)(15,59)(16,58)(17,39)(18,38)(19,37)(20,40)(21,63)(22,62)(23,61)(24,64)(25,42)(26,41)(27,44)(28,43)(29,46)(30,45)(31,48)(32,47), (1,17)(2,16)(3,19)(4,14)(5,58)(6,39)(7,60)(8,37)(9,13)(10,20)(11,15)(12,18)(21,44)(22,49)(23,42)(24,51)(25,40)(26,57)(27,38)(28,59)(29,35)(30,56)(31,33)(32,54)(34,61)(36,63)(41,46)(43,48)(45,52)(47,50)(53,64)(55,62), (1,18,11,16)(2,17,12,15)(3,20,9,14)(4,19,10,13)(5,64,27,31)(6,63,28,30)(7,62,25,29)(8,61,26,32)(21,43,45,51)(22,42,46,50)(23,41,47,49)(24,44,48,52)(33,58,53,38)(34,57,54,37)(35,60,55,40)(36,59,56,39)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,19)(14,20)(15,17)(16,18)(21,45)(22,46)(23,47)(24,48)(29,62)(30,63)(31,64)(32,61)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(41,49)(42,50)(43,51)(44,52), (1,51)(2,52)(3,49)(4,50)(5,56)(6,53)(7,54)(8,55)(9,41)(10,42)(11,43)(12,44)(13,46)(14,47)(15,48)(16,45)(17,24)(18,21)(19,22)(20,23)(25,34)(26,35)(27,36)(28,33)(29,57)(30,58)(31,59)(32,60)(37,62)(38,63)(39,64)(40,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53)(2,56)(3,55)(4,54)(5,52)(6,51)(7,50)(8,49)(9,35)(10,34)(11,33)(12,36)(13,57)(14,60)(15,59)(16,58)(17,39)(18,38)(19,37)(20,40)(21,63)(22,62)(23,61)(24,64)(25,42)(26,41)(27,44)(28,43)(29,46)(30,45)(31,48)(32,47), (1,17)(2,16)(3,19)(4,14)(5,58)(6,39)(7,60)(8,37)(9,13)(10,20)(11,15)(12,18)(21,44)(22,49)(23,42)(24,51)(25,40)(26,57)(27,38)(28,59)(29,35)(30,56)(31,33)(32,54)(34,61)(36,63)(41,46)(43,48)(45,52)(47,50)(53,64)(55,62), (1,18,11,16)(2,17,12,15)(3,20,9,14)(4,19,10,13)(5,64,27,31)(6,63,28,30)(7,62,25,29)(8,61,26,32)(21,43,45,51)(22,42,46,50)(23,41,47,49)(24,44,48,52)(33,58,53,38)(34,57,54,37)(35,60,55,40)(36,59,56,39) );

G=PermutationGroup([(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,11),(2,12),(3,9),(4,10),(5,27),(6,28),(7,25),(8,26),(13,19),(14,20),(15,17),(16,18),(21,45),(22,46),(23,47),(24,48),(29,62),(30,63),(31,64),(32,61),(33,53),(34,54),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(41,49),(42,50),(43,51),(44,52)], [(1,51),(2,52),(3,49),(4,50),(5,56),(6,53),(7,54),(8,55),(9,41),(10,42),(11,43),(12,44),(13,46),(14,47),(15,48),(16,45),(17,24),(18,21),(19,22),(20,23),(25,34),(26,35),(27,36),(28,33),(29,57),(30,58),(31,59),(32,60),(37,62),(38,63),(39,64),(40,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,53),(2,56),(3,55),(4,54),(5,52),(6,51),(7,50),(8,49),(9,35),(10,34),(11,33),(12,36),(13,57),(14,60),(15,59),(16,58),(17,39),(18,38),(19,37),(20,40),(21,63),(22,62),(23,61),(24,64),(25,42),(26,41),(27,44),(28,43),(29,46),(30,45),(31,48),(32,47)], [(1,17),(2,16),(3,19),(4,14),(5,58),(6,39),(7,60),(8,37),(9,13),(10,20),(11,15),(12,18),(21,44),(22,49),(23,42),(24,51),(25,40),(26,57),(27,38),(28,59),(29,35),(30,56),(31,33),(32,54),(34,61),(36,63),(41,46),(43,48),(45,52),(47,50),(53,64),(55,62)], [(1,18,11,16),(2,17,12,15),(3,20,9,14),(4,19,10,13),(5,64,27,31),(6,63,28,30),(7,62,25,29),(8,61,26,32),(21,43,45,51),(22,42,46,50),(23,41,47,49),(24,44,48,52),(33,58,53,38),(34,57,54,37),(35,60,55,40),(36,59,56,39)])

38 conjugacy classes

class 1 2A···2G2H···2M2N4A···4H4I···4T4U4V4W
order12···22···224···44···4444
size11···14···482···24···4888

38 irreducible representations

dim1111111111122224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D4D4C4○D4C4○D42+ 1+4
kernelC23.356C24C23.8Q8C23.23D4C23.63C23C24.C22C24.3C22C232D4C23.Q8C2×C4×D4C2×C4⋊D4C2×C22.D4C22⋊C4C4⋊C4C2×C4C23C22
# reps1121213121144482

Matrix representation of C23.356C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
340000
320000
001000
000100
000020
000003
,
400000
040000
000100
001000
000002
000030
,
130000
040000
004000
000100
000002
000030
,
300000
030000
004000
000400
000001
000040

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,4,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C23.356C24 in GAP, Magma, Sage, TeX

C_2^3._{356}C_2^4
% in TeX

G:=Group("C2^3.356C2^4");
// GroupNames label

G:=SmallGroup(128,1188);
// by ID

G=gap.SmallGroup(128,1188);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽