Copied to
clipboard

G = C2×C24.3C22order 128 = 27

Direct product of C2 and C24.3C22

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2×C24.3C22, C25.16C22, C23.174C24, C24.184C23, (C22×C4)⋊45D4, (C22×D4)⋊20C4, C24.66(C2×C4), (D4×C23).6C2, (C22×C42)⋊12C2, (C2×C42)⋊85C22, C23.828(C2×D4), C22.111(C4×D4), C23.74(C22×C4), C22.65(C23×C4), (C23×C4).36C22, C22.72(C22×D4), C23.362(C4○D4), C22.44(C41D4), (C22×C4).449C23, C22.159(C4⋊D4), C22.74(C4.4D4), (C22×D4).464C22, C2.11(C2×C4×D4), (C2×C4)⋊14(C2×D4), C42(C2×C22⋊C4), (C2×D4)⋊37(C2×C4), (C22×C4⋊C4)⋊6C2, C2.5(C2×C4⋊D4), C2.2(C2×C41D4), (C2×C4)⋊9(C22⋊C4), C2.3(C2×C4.4D4), (C2×C4⋊C4)⋊100C22, (C22×C22⋊C4)⋊5C2, C22.66(C2×C4○D4), C2.9(C22×C22⋊C4), (C2×C22⋊C4)⋊70C22, (C22×C4).410(C2×C4), (C2×C4).449(C22×C4), C22.132(C2×C22⋊C4), SmallGroup(128,1024)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C24.3C22
C1C2C22C23C24C23×C4C22×C42 — C2×C24.3C22
C1C22 — C2×C24.3C22
C1C24 — C2×C24.3C22
C1C23 — C2×C24.3C22

Generators and relations for C2×C24.3C22
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=e, g2=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, fbf-1=bc=cb, gbg-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd, ef=fe, eg=ge >

Subgroups: 1324 in 680 conjugacy classes, 236 normal (14 characteristic)
C1, C2 [×3], C2 [×12], C2 [×8], C4 [×8], C4 [×12], C22 [×3], C22 [×32], C22 [×72], C2×C4 [×36], C2×C4 [×44], D4 [×32], C23, C23 [×22], C23 [×104], C42 [×8], C22⋊C4 [×32], C4⋊C4 [×8], C22×C4 [×30], C22×C4 [×20], C2×D4 [×16], C2×D4 [×48], C24, C24 [×12], C24 [×24], C2×C42 [×4], C2×C42 [×4], C2×C22⋊C4 [×16], C2×C22⋊C4 [×16], C2×C4⋊C4 [×4], C2×C4⋊C4 [×4], C23×C4, C23×C4 [×4], C22×D4 [×12], C22×D4 [×8], C25 [×2], C24.3C22 [×8], C22×C42, C22×C22⋊C4 [×4], C22×C4⋊C4, D4×C23, C2×C24.3C22
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×16], C23 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×24], C4○D4 [×4], C24, C2×C22⋊C4 [×12], C4×D4 [×8], C4⋊D4 [×8], C4.4D4 [×4], C41D4 [×4], C23×C4, C22×D4 [×4], C2×C4○D4 [×2], C24.3C22 [×8], C22×C22⋊C4, C2×C4×D4 [×2], C2×C4⋊D4 [×2], C2×C4.4D4, C2×C41D4, C2×C24.3C22

Smallest permutation representation of C2×C24.3C22
On 64 points
Generators in S64
(1 52)(2 49)(3 50)(4 51)(5 31)(6 32)(7 29)(8 30)(9 27)(10 28)(11 25)(12 26)(13 23)(14 24)(15 21)(16 22)(17 60)(18 57)(19 58)(20 59)(33 63)(34 64)(35 61)(36 62)(37 46)(38 47)(39 48)(40 45)(41 55)(42 56)(43 53)(44 54)
(1 32)(2 39)(3 30)(4 37)(5 62)(6 52)(7 64)(8 50)(9 58)(10 14)(11 60)(12 16)(13 54)(15 56)(17 25)(18 43)(19 27)(20 41)(21 42)(22 26)(23 44)(24 28)(29 34)(31 36)(33 38)(35 40)(45 61)(46 51)(47 63)(48 49)(53 57)(55 59)
(1 33)(2 34)(3 35)(4 36)(5 46)(6 47)(7 48)(8 45)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(17 21)(18 22)(19 23)(20 24)(25 42)(26 43)(27 44)(28 41)(29 39)(30 40)(31 37)(32 38)(49 64)(50 61)(51 62)(52 63)
(1 57)(2 58)(3 59)(4 60)(5 42)(6 43)(7 44)(8 41)(9 39)(10 40)(11 37)(12 38)(13 34)(14 35)(15 36)(16 33)(17 51)(18 52)(19 49)(20 50)(21 62)(22 63)(23 64)(24 61)(25 46)(26 47)(27 48)(28 45)(29 54)(30 55)(31 56)(32 53)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 53 57 32)(2 29 58 54)(3 55 59 30)(4 31 60 56)(5 17 42 51)(6 52 43 18)(7 19 44 49)(8 50 41 20)(9 34 39 13)(10 14 40 35)(11 36 37 15)(12 16 38 33)(21 25 62 46)(22 47 63 26)(23 27 64 48)(24 45 61 28)

G:=sub<Sym(64)| (1,52)(2,49)(3,50)(4,51)(5,31)(6,32)(7,29)(8,30)(9,27)(10,28)(11,25)(12,26)(13,23)(14,24)(15,21)(16,22)(17,60)(18,57)(19,58)(20,59)(33,63)(34,64)(35,61)(36,62)(37,46)(38,47)(39,48)(40,45)(41,55)(42,56)(43,53)(44,54), (1,32)(2,39)(3,30)(4,37)(5,62)(6,52)(7,64)(8,50)(9,58)(10,14)(11,60)(12,16)(13,54)(15,56)(17,25)(18,43)(19,27)(20,41)(21,42)(22,26)(23,44)(24,28)(29,34)(31,36)(33,38)(35,40)(45,61)(46,51)(47,63)(48,49)(53,57)(55,59), (1,33)(2,34)(3,35)(4,36)(5,46)(6,47)(7,48)(8,45)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,21)(18,22)(19,23)(20,24)(25,42)(26,43)(27,44)(28,41)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,57)(2,58)(3,59)(4,60)(5,42)(6,43)(7,44)(8,41)(9,39)(10,40)(11,37)(12,38)(13,34)(14,35)(15,36)(16,33)(17,51)(18,52)(19,49)(20,50)(21,62)(22,63)(23,64)(24,61)(25,46)(26,47)(27,48)(28,45)(29,54)(30,55)(31,56)(32,53), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53,57,32)(2,29,58,54)(3,55,59,30)(4,31,60,56)(5,17,42,51)(6,52,43,18)(7,19,44,49)(8,50,41,20)(9,34,39,13)(10,14,40,35)(11,36,37,15)(12,16,38,33)(21,25,62,46)(22,47,63,26)(23,27,64,48)(24,45,61,28)>;

G:=Group( (1,52)(2,49)(3,50)(4,51)(5,31)(6,32)(7,29)(8,30)(9,27)(10,28)(11,25)(12,26)(13,23)(14,24)(15,21)(16,22)(17,60)(18,57)(19,58)(20,59)(33,63)(34,64)(35,61)(36,62)(37,46)(38,47)(39,48)(40,45)(41,55)(42,56)(43,53)(44,54), (1,32)(2,39)(3,30)(4,37)(5,62)(6,52)(7,64)(8,50)(9,58)(10,14)(11,60)(12,16)(13,54)(15,56)(17,25)(18,43)(19,27)(20,41)(21,42)(22,26)(23,44)(24,28)(29,34)(31,36)(33,38)(35,40)(45,61)(46,51)(47,63)(48,49)(53,57)(55,59), (1,33)(2,34)(3,35)(4,36)(5,46)(6,47)(7,48)(8,45)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,21)(18,22)(19,23)(20,24)(25,42)(26,43)(27,44)(28,41)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,57)(2,58)(3,59)(4,60)(5,42)(6,43)(7,44)(8,41)(9,39)(10,40)(11,37)(12,38)(13,34)(14,35)(15,36)(16,33)(17,51)(18,52)(19,49)(20,50)(21,62)(22,63)(23,64)(24,61)(25,46)(26,47)(27,48)(28,45)(29,54)(30,55)(31,56)(32,53), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53,57,32)(2,29,58,54)(3,55,59,30)(4,31,60,56)(5,17,42,51)(6,52,43,18)(7,19,44,49)(8,50,41,20)(9,34,39,13)(10,14,40,35)(11,36,37,15)(12,16,38,33)(21,25,62,46)(22,47,63,26)(23,27,64,48)(24,45,61,28) );

G=PermutationGroup([(1,52),(2,49),(3,50),(4,51),(5,31),(6,32),(7,29),(8,30),(9,27),(10,28),(11,25),(12,26),(13,23),(14,24),(15,21),(16,22),(17,60),(18,57),(19,58),(20,59),(33,63),(34,64),(35,61),(36,62),(37,46),(38,47),(39,48),(40,45),(41,55),(42,56),(43,53),(44,54)], [(1,32),(2,39),(3,30),(4,37),(5,62),(6,52),(7,64),(8,50),(9,58),(10,14),(11,60),(12,16),(13,54),(15,56),(17,25),(18,43),(19,27),(20,41),(21,42),(22,26),(23,44),(24,28),(29,34),(31,36),(33,38),(35,40),(45,61),(46,51),(47,63),(48,49),(53,57),(55,59)], [(1,33),(2,34),(3,35),(4,36),(5,46),(6,47),(7,48),(8,45),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(17,21),(18,22),(19,23),(20,24),(25,42),(26,43),(27,44),(28,41),(29,39),(30,40),(31,37),(32,38),(49,64),(50,61),(51,62),(52,63)], [(1,57),(2,58),(3,59),(4,60),(5,42),(6,43),(7,44),(8,41),(9,39),(10,40),(11,37),(12,38),(13,34),(14,35),(15,36),(16,33),(17,51),(18,52),(19,49),(20,50),(21,62),(22,63),(23,64),(24,61),(25,46),(26,47),(27,48),(28,45),(29,54),(30,55),(31,56),(32,53)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,53,57,32),(2,29,58,54),(3,55,59,30),(4,31,60,56),(5,17,42,51),(6,52,43,18),(7,19,44,49),(8,50,41,20),(9,34,39,13),(10,14,40,35),(11,36,37,15),(12,16,38,33),(21,25,62,46),(22,47,63,26),(23,27,64,48),(24,45,61,28)])

56 conjugacy classes

class 1 2A···2O2P···2W4A···4X4Y···4AF
order12···22···24···44···4
size11···14···42···24···4

56 irreducible representations

dim111111122
type+++++++
imageC1C2C2C2C2C2C4D4C4○D4
kernelC2×C24.3C22C24.3C22C22×C42C22×C22⋊C4C22×C4⋊C4D4×C23C22×D4C22×C4C23
# reps18141116168

Matrix representation of C2×C24.3C22 in GL8(𝔽5)

10000000
01000000
00400000
00040000
00001000
00000100
00000010
00000001
,
40000000
31000000
00010000
00100000
00000400
00004000
00000010
00000034
,
10000000
01000000
00100000
00010000
00001000
00000100
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000010
00000001
,
40000000
04000000
00100000
00010000
00001000
00000100
00000040
00000004
,
30000000
12000000
00010000
00100000
00000400
00004000
00000033
00000002
,
14000000
24000000
00010000
00400000
00000400
00001000
00000010
00000001

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[3,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2],[1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C2×C24.3C22 in GAP, Magma, Sage, TeX

C_2\times C_2^4._3C_2^2
% in TeX

G:=Group("C2xC2^4.3C2^2");
// GroupNames label

G:=SmallGroup(128,1024);
// by ID

G=gap.SmallGroup(128,1024);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,568,758,184]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=e,g^2=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*b*f^-1=b*c=c*b,g*b*g^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e>;
// generators/relations

׿
×
𝔽