Copied to
clipboard

G = C2×PSU3(𝔽2)  order 144 = 24·32

Direct product of C2 and PSU3(𝔽2)

direct product, non-abelian, soluble, monomial, rational

Aliases: C2×PSU3(𝔽2), C3⋊S3⋊Q8, (C3×C6)⋊Q8, C32⋊(C2×Q8), C3⋊S3.2C23, C32⋊C4.3C22, (C2×C32⋊C4).5C2, (C2×C3⋊S3).7C22, SmallGroup(144,187)

Series: Derived Chief Lower central Upper central

C1C32C3⋊S3 — C2×PSU3(𝔽2)
C1C32C3⋊S3C32⋊C4PSU3(𝔽2) — C2×PSU3(𝔽2)
C32C3⋊S3 — C2×PSU3(𝔽2)
C1C2

Generators and relations for C2×PSU3(𝔽2)
 G = < a,b,c,d,e | a2=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ece-1=bc=cb, dbd-1=c-1, ebe-1=b-1c, dcd-1=b, ede-1=d-1 >

9C2
9C2
4C3
9C4
9C4
9C22
9C4
9C4
9C4
9C4
4C6
12S3
12S3
9C2×C4
9Q8
9Q8
9Q8
9C2×C4
9C2×C4
9Q8
12D6
9C2×Q8

Character table of C2×PSU3(𝔽2)

 class 12A2B2C34A4B4C4D4E4F6
 size 119981818181818188
ρ1111111111111    trivial
ρ21-11-11-11-111-1-1    linear of order 2
ρ31-11-11111-1-1-1-1    linear of order 2
ρ411111-11-1-1-111    linear of order 2
ρ51-11-111-1-11-11-1    linear of order 2
ρ611111-1-111-1-11    linear of order 2
ρ7111111-1-1-11-11    linear of order 2
ρ81-11-11-1-11-111-1    linear of order 2
ρ922-2-220000002    symplectic lifted from Q8, Schur index 2
ρ102-2-222000000-2    symplectic lifted from Q8, Schur index 2
ρ118-800-10000001    orthogonal faithful
ρ128800-1000000-1    orthogonal lifted from PSU3(𝔽2)

Permutation representations of C2×PSU3(𝔽2)
On 18 points - transitive group 18T64
Generators in S18
(1 2)(3 17)(4 18)(5 15)(6 16)(7 14)(8 11)(9 12)(10 13)
(1 5 3)(2 15 17)(4 14 10)(6 8 12)(7 13 18)(9 16 11)
(1 16 18)(2 6 4)(3 9 13)(5 11 7)(8 14 15)(10 17 12)
(1 2)(3 4 5 6)(7 8 9 10)(11 12 13 14)(15 16 17 18)
(3 9 5 7)(4 8 6 10)(11 16 13 18)(12 15 14 17)

G:=sub<Sym(18)| (1,2)(3,17)(4,18)(5,15)(6,16)(7,14)(8,11)(9,12)(10,13), (1,5,3)(2,15,17)(4,14,10)(6,8,12)(7,13,18)(9,16,11), (1,16,18)(2,6,4)(3,9,13)(5,11,7)(8,14,15)(10,17,12), (1,2)(3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18), (3,9,5,7)(4,8,6,10)(11,16,13,18)(12,15,14,17)>;

G:=Group( (1,2)(3,17)(4,18)(5,15)(6,16)(7,14)(8,11)(9,12)(10,13), (1,5,3)(2,15,17)(4,14,10)(6,8,12)(7,13,18)(9,16,11), (1,16,18)(2,6,4)(3,9,13)(5,11,7)(8,14,15)(10,17,12), (1,2)(3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18), (3,9,5,7)(4,8,6,10)(11,16,13,18)(12,15,14,17) );

G=PermutationGroup([[(1,2),(3,17),(4,18),(5,15),(6,16),(7,14),(8,11),(9,12),(10,13)], [(1,5,3),(2,15,17),(4,14,10),(6,8,12),(7,13,18),(9,16,11)], [(1,16,18),(2,6,4),(3,9,13),(5,11,7),(8,14,15),(10,17,12)], [(1,2),(3,4,5,6),(7,8,9,10),(11,12,13,14),(15,16,17,18)], [(3,9,5,7),(4,8,6,10),(11,16,13,18),(12,15,14,17)]])

G:=TransitiveGroup(18,64);

On 24 points - transitive group 24T257
Generators in S24
(1 8)(2 7)(3 5)(4 6)(9 22)(10 23)(11 24)(12 21)(13 20)(14 17)(15 18)(16 19)
(1 23 21)(2 22 24)(4 19 17)(6 16 14)(7 9 11)(8 10 12)
(1 23 21)(2 24 22)(3 20 18)(5 13 15)(7 11 9)(8 10 12)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 5)(2 6)(3 8)(4 7)(9 19 11 17)(10 18 12 20)(13 23 15 21)(14 22 16 24)

G:=sub<Sym(24)| (1,8)(2,7)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,20)(14,17)(15,18)(16,19), (1,23,21)(2,22,24)(4,19,17)(6,16,14)(7,9,11)(8,10,12), (1,23,21)(2,24,22)(3,20,18)(5,13,15)(7,11,9)(8,10,12), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,6)(3,8)(4,7)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24)>;

G:=Group( (1,8)(2,7)(3,5)(4,6)(9,22)(10,23)(11,24)(12,21)(13,20)(14,17)(15,18)(16,19), (1,23,21)(2,22,24)(4,19,17)(6,16,14)(7,9,11)(8,10,12), (1,23,21)(2,24,22)(3,20,18)(5,13,15)(7,11,9)(8,10,12), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,5)(2,6)(3,8)(4,7)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24) );

G=PermutationGroup([[(1,8),(2,7),(3,5),(4,6),(9,22),(10,23),(11,24),(12,21),(13,20),(14,17),(15,18),(16,19)], [(1,23,21),(2,22,24),(4,19,17),(6,16,14),(7,9,11),(8,10,12)], [(1,23,21),(2,24,22),(3,20,18),(5,13,15),(7,11,9),(8,10,12)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,5),(2,6),(3,8),(4,7),(9,19,11,17),(10,18,12,20),(13,23,15,21),(14,22,16,24)]])

G:=TransitiveGroup(24,257);

On 24 points - transitive group 24T260
Generators in S24
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)
(2 15 20)(4 18 13)(5 21 10)(6 22 11)(7 12 23)(8 9 24)
(1 19 14)(3 16 17)(5 10 21)(6 22 11)(7 23 12)(8 9 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)

G:=sub<Sym(24)| (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24), (2,15,20)(4,18,13)(5,21,10)(6,22,11)(7,12,23)(8,9,24), (1,19,14)(3,16,17)(5,10,21)(6,22,11)(7,23,12)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13)>;

G:=Group( (1,3)(2,4)(5,12)(6,9)(7,10)(8,11)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24), (2,15,20)(4,18,13)(5,21,10)(6,22,11)(7,12,23)(8,9,24), (1,19,14)(3,16,17)(5,10,21)(6,22,11)(7,23,12)(8,9,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13) );

G=PermutationGroup([[(1,3),(2,4),(5,12),(6,9),(7,10),(8,11),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24)], [(2,15,20),(4,18,13),(5,21,10),(6,22,11),(7,12,23),(8,9,24)], [(1,19,14),(3,16,17),(5,10,21),(6,22,11),(7,23,12),(8,9,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)]])

G:=TransitiveGroup(24,260);

C2×PSU3(𝔽2) is a maximal subgroup of   PSU3(𝔽2)⋊C4  C4⋊PSU3(𝔽2)  C62⋊Q8
C2×PSU3(𝔽2) is a maximal quotient of   C4.3PSU3(𝔽2)  C4⋊PSU3(𝔽2)  C62⋊Q8

Matrix representation of C2×PSU3(𝔽2) in GL8(ℤ)

-10000000
0-1000000
00-100000
000-10000
0000-1000
00000-100
000000-10
0000000-1
,
00000010
00000001
-1-1-1-1-1-1-1-1
10000000
01000000
00100000
00010000
00001000
,
00100000
10000000
01000000
00000100
00010000
00001000
-1-1-1-1-1-1-1-1
00000010
,
10000000
00010000
00000010
00100000
00000100
-1-1-1-1-1-1-1-1
01000000
00001000
,
-10000000
0000-1000
11111111
0000000-1
00-100000
000-10000
00000-100
000000-10

G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0],[0,1,0,0,0,0,-1,0,0,0,1,0,0,0,-1,0,1,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0],[1,0,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,0,1,0,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,1,-1,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,-1,0,0],[-1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,-1,0,0,1,-1,0,0,0,0] >;

C2×PSU3(𝔽2) in GAP, Magma, Sage, TeX

C_2\times {\rm PSU}_3({\mathbb F}_2)
% in TeX

G:=Group("C2xPSU(3,2)");
// GroupNames label

G:=SmallGroup(144,187);
// by ID

G=gap.SmallGroup(144,187);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,48,121,55,3364,730,142,4613,587,455]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,d*b*d^-1=c^-1,e*b*e^-1=b^-1*c,d*c*d^-1=b,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C2×PSU3(𝔽2) in TeX
Character table of C2×PSU3(𝔽2) in TeX

׿
×
𝔽