Copied to
clipboard

G = C2xS3wrC2order 144 = 24·32

Direct product of C2 and S3wrC2

direct product, non-abelian, soluble, monomial, rational

Aliases: C2xS3wrC2, C3:S3:D4, (C3xC6):D4, S32:C22, C32:(C2xD4), C32:C4:C22, C3:S3.1C23, (C2xS32):5C2, (C2xC32:C4):3C2, (C2xC3:S3).6C22, SmallGroup(144,186)

Series: Derived Chief Lower central Upper central

C1C32C3:S3 — C2xS3wrC2
C1C32C3:S3S32S3wrC2 — C2xS3wrC2
C32C3:S3 — C2xS3wrC2
C1C2

Generators and relations for C2xS3wrC2
 G = < a,b,c,d,e | a2=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=d-1 >

Subgroups: 414 in 86 conjugacy classes, 21 normal (9 characteristic)
C1, C2, C2, C3, C4, C22, S3, C6, C2xC4, D4, C23, C32, D6, C2xC6, C2xD4, C3xS3, C3:S3, C3xC6, C22xS3, C32:C4, S32, S32, S3xC6, C2xC3:S3, S3wrC2, C2xC32:C4, C2xS32, C2xS3wrC2
Quotients: C1, C2, C22, D4, C23, C2xD4, S3wrC2, C2xS3wrC2

Character table of C2xS3wrC2

 class 12A2B2C2D2E2F2G3A3B4A4B6A6B6C6D6E6F
 size 116666994418184412121212
ρ1111111111111111111    trivial
ρ21-11-1-111-1111-1-1-1-11-11    linear of order 2
ρ311-11-111111-1-1111-1-11    linear of order 2
ρ41-1-1-1111-111-11-1-1-1-111    linear of order 2
ρ511-1-1-1-111111111-1-1-1-1    linear of order 2
ρ61-1-111-11-1111-1-1-11-11-1    linear of order 2
ρ7111-11-11111-1-111-111-1    linear of order 2
ρ81-111-1-11-111-11-1-111-1-1    linear of order 2
ρ9220000-2-22200220000    orthogonal lifted from D4
ρ102-20000-222200-2-20000    orthogonal lifted from D4
ρ1144020200-21001-2-100-1    orthogonal lifted from S3wrC2
ρ1244-20-20001-200-210110    orthogonal lifted from S3wrC2
ρ134-4020-200-2100-12-1001    orthogonal faithful
ρ144-4-2020001-2002-101-10    orthogonal faithful
ρ154-40-20200-2100-12100-1    orthogonal faithful
ρ164-420-20001-2002-10-110    orthogonal faithful
ρ17442020001-200-210-1-10    orthogonal lifted from S3wrC2
ρ18440-20-200-21001-21001    orthogonal lifted from S3wrC2

Permutation representations of C2xS3wrC2
On 12 points - transitive group 12T77
Generators in S12
(1 4)(2 3)(5 12)(6 9)(7 10)(8 11)
(1 7 5)(2 8 6)(3 11 9)(4 10 12)
(1 7 5)(2 6 8)(3 9 11)(4 10 12)
(1 2)(3 4)(5 6 7 8)(9 10 11 12)
(1 3)(2 4)(5 11)(6 10)(7 9)(8 12)

G:=sub<Sym(12)| (1,4)(2,3)(5,12)(6,9)(7,10)(8,11), (1,7,5)(2,8,6)(3,11,9)(4,10,12), (1,7,5)(2,6,8)(3,9,11)(4,10,12), (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,3)(2,4)(5,11)(6,10)(7,9)(8,12)>;

G:=Group( (1,4)(2,3)(5,12)(6,9)(7,10)(8,11), (1,7,5)(2,8,6)(3,11,9)(4,10,12), (1,7,5)(2,6,8)(3,9,11)(4,10,12), (1,2)(3,4)(5,6,7,8)(9,10,11,12), (1,3)(2,4)(5,11)(6,10)(7,9)(8,12) );

G=PermutationGroup([[(1,4),(2,3),(5,12),(6,9),(7,10),(8,11)], [(1,7,5),(2,8,6),(3,11,9),(4,10,12)], [(1,7,5),(2,6,8),(3,9,11),(4,10,12)], [(1,2),(3,4),(5,6,7,8),(9,10,11,12)], [(1,3),(2,4),(5,11),(6,10),(7,9),(8,12)]])

G:=TransitiveGroup(12,77);

On 12 points - transitive group 12T78
Generators in S12
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)
(1 9 8)(3 6 11)
(2 5 10)(4 12 7)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
(2 4)(5 12)(6 11)(7 10)(8 9)

G:=sub<Sym(12)| (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (1,9,8)(3,6,11), (2,5,10)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,12)(6,11)(7,10)(8,9)>;

G:=Group( (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (1,9,8)(3,6,11), (2,5,10)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12), (2,4)(5,12)(6,11)(7,10)(8,9) );

G=PermutationGroup([[(1,3),(2,4),(5,12),(6,9),(7,10),(8,11)], [(1,9,8),(3,6,11)], [(2,5,10),(4,12,7)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)], [(2,4),(5,12),(6,11),(7,10),(8,9)]])

G:=TransitiveGroup(12,78);

On 18 points - transitive group 18T63
Generators in S18
(1 2)(3 13)(4 14)(5 11)(6 12)(7 17)(8 18)(9 15)(10 16)
(1 14 12)(2 4 6)(3 10 9)(5 7 8)(11 17 18)(13 16 15)
(1 13 11)(2 3 5)(4 10 7)(6 9 8)(12 15 18)(14 16 17)
(3 4 5 6)(7 8 9 10)(11 12 13 14)(15 16 17 18)
(4 6)(7 8)(9 10)(12 14)(15 16)(17 18)

G:=sub<Sym(18)| (1,2)(3,13)(4,14)(5,11)(6,12)(7,17)(8,18)(9,15)(10,16), (1,14,12)(2,4,6)(3,10,9)(5,7,8)(11,17,18)(13,16,15), (1,13,11)(2,3,5)(4,10,7)(6,9,8)(12,15,18)(14,16,17), (3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18), (4,6)(7,8)(9,10)(12,14)(15,16)(17,18)>;

G:=Group( (1,2)(3,13)(4,14)(5,11)(6,12)(7,17)(8,18)(9,15)(10,16), (1,14,12)(2,4,6)(3,10,9)(5,7,8)(11,17,18)(13,16,15), (1,13,11)(2,3,5)(4,10,7)(6,9,8)(12,15,18)(14,16,17), (3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18), (4,6)(7,8)(9,10)(12,14)(15,16)(17,18) );

G=PermutationGroup([[(1,2),(3,13),(4,14),(5,11),(6,12),(7,17),(8,18),(9,15),(10,16)], [(1,14,12),(2,4,6),(3,10,9),(5,7,8),(11,17,18),(13,16,15)], [(1,13,11),(2,3,5),(4,10,7),(6,9,8),(12,15,18),(14,16,17)], [(3,4,5,6),(7,8,9,10),(11,12,13,14),(15,16,17,18)], [(4,6),(7,8),(9,10),(12,14),(15,16),(17,18)]])

G:=TransitiveGroup(18,63);

On 24 points - transitive group 24T261
Generators in S24
(1 17)(2 18)(3 19)(4 20)(5 15)(6 16)(7 13)(8 14)(9 21)(10 22)(11 23)(12 24)
(1 5 9)(2 6 10)(3 11 7)(4 12 8)(13 19 23)(14 20 24)(15 21 17)(16 22 18)
(1 5 9)(2 10 6)(3 11 7)(4 8 12)(13 19 23)(14 24 20)(15 21 17)(16 18 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)

G:=sub<Sym(24)| (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24), (1,5,9)(2,6,10)(3,11,7)(4,12,8)(13,19,23)(14,20,24)(15,21,17)(16,22,18), (1,5,9)(2,10,6)(3,11,7)(4,8,12)(13,19,23)(14,24,20)(15,21,17)(16,18,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24), (1,5,9)(2,6,10)(3,11,7)(4,12,8)(13,19,23)(14,20,24)(15,21,17)(16,22,18), (1,5,9)(2,10,6)(3,11,7)(4,8,12)(13,19,23)(14,24,20)(15,21,17)(16,18,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23) );

G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,15),(6,16),(7,13),(8,14),(9,21),(10,22),(11,23),(12,24)], [(1,5,9),(2,6,10),(3,11,7),(4,12,8),(13,19,23),(14,20,24),(15,21,17),(16,22,18)], [(1,5,9),(2,10,6),(3,11,7),(4,8,12),(13,19,23),(14,24,20),(15,21,17),(16,18,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23)]])

G:=TransitiveGroup(24,261);

On 24 points - transitive group 24T262
Generators in S24
(1 18)(2 19)(3 20)(4 17)(5 13)(6 14)(7 15)(8 16)(9 22)(10 23)(11 24)(12 21)
(1 7 12)(2 9 8)(3 10 5)(4 6 11)(13 20 23)(14 24 17)(15 21 18)(16 19 22)
(1 12 7)(2 9 8)(3 5 10)(4 6 11)(13 23 20)(14 24 17)(15 18 21)(16 19 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 9)(6 12)(7 11)(8 10)(13 22)(14 21)(15 24)(16 23)(17 18)(19 20)

G:=sub<Sym(24)| (1,18)(2,19)(3,20)(4,17)(5,13)(6,14)(7,15)(8,16)(9,22)(10,23)(11,24)(12,21), (1,7,12)(2,9,8)(3,10,5)(4,6,11)(13,20,23)(14,24,17)(15,21,18)(16,19,22), (1,12,7)(2,9,8)(3,5,10)(4,6,11)(13,23,20)(14,24,17)(15,18,21)(16,19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,9)(6,12)(7,11)(8,10)(13,22)(14,21)(15,24)(16,23)(17,18)(19,20)>;

G:=Group( (1,18)(2,19)(3,20)(4,17)(5,13)(6,14)(7,15)(8,16)(9,22)(10,23)(11,24)(12,21), (1,7,12)(2,9,8)(3,10,5)(4,6,11)(13,20,23)(14,24,17)(15,21,18)(16,19,22), (1,12,7)(2,9,8)(3,5,10)(4,6,11)(13,23,20)(14,24,17)(15,18,21)(16,19,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,9)(6,12)(7,11)(8,10)(13,22)(14,21)(15,24)(16,23)(17,18)(19,20) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,17),(5,13),(6,14),(7,15),(8,16),(9,22),(10,23),(11,24),(12,21)], [(1,7,12),(2,9,8),(3,10,5),(4,6,11),(13,20,23),(14,24,17),(15,21,18),(16,19,22)], [(1,12,7),(2,9,8),(3,5,10),(4,6,11),(13,23,20),(14,24,17),(15,18,21),(16,19,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,9),(6,12),(7,11),(8,10),(13,22),(14,21),(15,24),(16,23),(17,18),(19,20)]])

G:=TransitiveGroup(24,262);

On 24 points - transitive group 24T263
Generators in S24
(1 5)(2 6)(3 8)(4 7)(9 14)(10 15)(11 16)(12 13)(17 23)(18 24)(19 21)(20 22)
(1 22 24)(2 23 21)(3 9 11)(4 10 12)(5 20 18)(6 17 19)(7 15 13)(8 14 16)
(1 22 24)(2 21 23)(3 9 11)(4 12 10)(5 20 18)(6 19 17)(7 13 15)(8 14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 7)(6 8)(9 21)(10 24)(11 23)(12 22)(13 20)(14 19)(15 18)(16 17)

G:=sub<Sym(24)| (1,5)(2,6)(3,8)(4,7)(9,14)(10,15)(11,16)(12,13)(17,23)(18,24)(19,21)(20,22), (1,22,24)(2,23,21)(3,9,11)(4,10,12)(5,20,18)(6,17,19)(7,15,13)(8,14,16), (1,22,24)(2,21,23)(3,9,11)(4,12,10)(5,20,18)(6,19,17)(7,13,15)(8,14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,7)(6,8)(9,21)(10,24)(11,23)(12,22)(13,20)(14,19)(15,18)(16,17)>;

G:=Group( (1,5)(2,6)(3,8)(4,7)(9,14)(10,15)(11,16)(12,13)(17,23)(18,24)(19,21)(20,22), (1,22,24)(2,23,21)(3,9,11)(4,10,12)(5,20,18)(6,17,19)(7,15,13)(8,14,16), (1,22,24)(2,21,23)(3,9,11)(4,12,10)(5,20,18)(6,19,17)(7,13,15)(8,14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,7)(6,8)(9,21)(10,24)(11,23)(12,22)(13,20)(14,19)(15,18)(16,17) );

G=PermutationGroup([[(1,5),(2,6),(3,8),(4,7),(9,14),(10,15),(11,16),(12,13),(17,23),(18,24),(19,21),(20,22)], [(1,22,24),(2,23,21),(3,9,11),(4,10,12),(5,20,18),(6,17,19),(7,15,13),(8,14,16)], [(1,22,24),(2,21,23),(3,9,11),(4,12,10),(5,20,18),(6,19,17),(7,13,15),(8,14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,7),(6,8),(9,21),(10,24),(11,23),(12,22),(13,20),(14,19),(15,18),(16,17)]])

G:=TransitiveGroup(24,263);

On 24 points - transitive group 24T264
Generators in S24
(1 3)(2 4)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)(17 24)(18 21)(19 22)(20 23)
(2 22 17)(4 19 24)(5 14 10)(7 12 16)
(1 21 20)(3 18 23)(6 11 15)(8 13 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)

G:=sub<Sym(24)| (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (2,22,17)(4,19,24)(5,14,10)(7,12,16), (1,21,20)(3,18,23)(6,11,15)(8,13,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14)(17,24)(18,21)(19,22)(20,23), (2,22,17)(4,19,24)(5,14,10)(7,12,16), (1,21,20)(3,18,23)(6,11,15)(8,13,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );

G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14),(17,24),(18,21),(19,22),(20,23)], [(2,22,17),(4,19,24),(5,14,10),(7,12,16)], [(1,21,20),(3,18,23),(6,11,15),(8,13,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])

G:=TransitiveGroup(24,264);

C2xS3wrC2 is a maximal subgroup of
C2.AΓL1(F9)  S32:D4  C4:S3wrC2  D6wrC2  C62:D4
C2xS3wrC2 is a maximal quotient of
S32:Q8  C4.4S3wrC2  C32:C4:Q8  C32:D8:5C2  C32:D8:C2  C3:S3:D8  C32:Q16:C2  C3:S3:2SD16  C3:S3:Q16  S32:D4  C4:S3wrC2  C62.9D4  C62.12D4  C62.13D4  C62.15D4  D6wrC2  C62:D4

Polynomial with Galois group C2xS3wrC2 over Q
actionf(x)Disc(f)
12T77x12-2x10-x8-2x6+5x4-6x2+4226·56·114·5092
12T78x12-12x10+54x8-104x6+57x4+36x2-16-256·312·56

Matrix representation of C2xS3wrC2 in GL4(Z) generated by

-1000
0-100
00-10
000-1
,
0100
-1-100
00-1-1
0010
,
-1-100
1000
00-1-1
0010
,
0010
00-1-1
-1000
0-100
,
0010
0001
1000
0100
G:=sub<GL(4,Integers())| [-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,-1,0,0,1,-1,0,0,0,0,-1,1,0,0,-1,0],[-1,1,0,0,-1,0,0,0,0,0,-1,1,0,0,-1,0],[0,0,-1,0,0,0,0,-1,1,-1,0,0,0,-1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0] >;

C2xS3wrC2 in GAP, Magma, Sage, TeX

C_2\times S_3\wr C_2
% in TeX

G:=Group("C2xS3wrC2");
// GroupNames label

G:=SmallGroup(144,186);
// by ID

G=gap.SmallGroup(144,186);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,3,121,964,730,142,299,455]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C2xS3wrC2 in TeX

׿
x
:
Z
F
o
wr
Q
<