non-abelian, soluble, monomial
Aliases: C2.1AΓL1(𝔽9), S3≀C2⋊C4, C3⋊S3.D8, (C2×F9)⋊1C2, C32⋊C4.1D4, C32⋊(D4⋊C4), (C3×C6).1SD16, C2.PSU3(𝔽2)⋊1C2, (C2×C3⋊S3).1D4, (C2×S3≀C2).1C2, C32⋊C4.1(C2×C4), C3⋊S3.1(C22⋊C4), (C2×C32⋊C4).1C22, SmallGroup(288,841)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊C4 — C2.AΓL1(𝔽9) |
C1 — C32 — C3⋊S3 — C32⋊C4 — C2×C32⋊C4 — C2×F9 — C2.AΓL1(𝔽9) |
C32 — C3⋊S3 — C32⋊C4 — C2.AΓL1(𝔽9) |
Generators and relations for C2.AΓL1(𝔽9)
G = < a,b,c,d,e | a2=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, ebe=b-1c, dcd-1=b, ce=ec, ede=ad3 >
Subgroups: 524 in 66 conjugacy classes, 16 normal (14 characteristic)
C1, C2, C2, C3, C4, C22, S3, C6, C8, C2×C4, D4, C23, C32, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3×S3, C3⋊S3, C3×C6, C22×S3, D4⋊C4, C32⋊C4, C32⋊C4, S32, S3×C6, C2×C3⋊S3, F9, S3≀C2, S3≀C2, C2×C32⋊C4, C2×C32⋊C4, C2×S32, C2.PSU3(𝔽2), C2×F9, C2×S3≀C2, C2.AΓL1(𝔽9)
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, D4⋊C4, AΓL1(𝔽9), C2.AΓL1(𝔽9)
Character table of C2.AΓL1(𝔽9)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 9 | 9 | 12 | 12 | 8 | 18 | 18 | 36 | 36 | 8 | 24 | 24 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | i | -i | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -i | i | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ15 | 8 | -8 | 0 | 0 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 8 | 8 | 0 | 0 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ17 | 8 | 8 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ18 | 8 | -8 | 0 | 0 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 8)(2 5)(3 6)(4 7)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 11 15)(2 12 16)(3 9 13)(5 23 19)(6 20 24)(8 22 18)
(2 12 16)(3 13 9)(4 10 14)(5 23 19)(6 24 20)(7 21 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 7)(4 5)(10 23)(11 15)(12 21)(14 19)(16 17)(18 22)
G:=sub<Sym(24)| (1,8)(2,5)(3,6)(4,7)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,11,15)(2,12,16)(3,9,13)(5,23,19)(6,20,24)(8,22,18), (2,12,16)(3,13,9)(4,10,14)(5,23,19)(6,24,20)(7,21,17), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,7)(4,5)(10,23)(11,15)(12,21)(14,19)(16,17)(18,22)>;
G:=Group( (1,8)(2,5)(3,6)(4,7)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,11,15)(2,12,16)(3,9,13)(5,23,19)(6,20,24)(8,22,18), (2,12,16)(3,13,9)(4,10,14)(5,23,19)(6,24,20)(7,21,17), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,7)(4,5)(10,23)(11,15)(12,21)(14,19)(16,17)(18,22) );
G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,11,15),(2,12,16),(3,9,13),(5,23,19),(6,20,24),(8,22,18)], [(2,12,16),(3,13,9),(4,10,14),(5,23,19),(6,24,20),(7,21,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,7),(4,5),(10,23),(11,15),(12,21),(14,19),(16,17),(18,22)]])
G:=TransitiveGroup(24,680);
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 15 21)(3 9 23)(4 10 24)(5 17 11)(7 19 13)(8 20 14)
(1 21 15)(2 16 22)(4 10 24)(5 11 17)(6 18 12)(8 20 14)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 13)(10 18)(12 24)(14 22)(16 20)(19 23)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,15,21)(3,9,23)(4,10,24)(5,17,11)(7,19,13)(8,20,14), (1,21,15)(2,16,22)(4,10,24)(5,11,17)(6,18,12)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,13)(10,18)(12,24)(14,22)(16,20)(19,23)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,15,21)(3,9,23)(4,10,24)(5,17,11)(7,19,13)(8,20,14), (1,21,15)(2,16,22)(4,10,24)(5,11,17)(6,18,12)(8,20,14), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,13)(10,18)(12,24)(14,22)(16,20)(19,23) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,15,21),(3,9,23),(4,10,24),(5,17,11),(7,19,13),(8,20,14)], [(1,21,15),(2,16,22),(4,10,24),(5,11,17),(6,18,12),(8,20,14)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,13),(10,18),(12,24),(14,22),(16,20),(19,23)]])
G:=TransitiveGroup(24,683);
Matrix representation of C2.AΓL1(𝔽9) ►in GL8(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0],[0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0] >;
C2.AΓL1(𝔽9) in GAP, Magma, Sage, TeX
C_2.{\rm AGammaL}_1({\mathbb F}_9)
% in TeX
G:=Group("C2.AGammaL(1,9)");
// GroupNames label
G:=SmallGroup(288,841);
// by ID
G=gap.SmallGroup(288,841);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,421,219,100,4037,4716,2371,201,10982,4717,3156,622]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,e*b*e=b^-1*c,d*c*d^-1=b,c*e=e*c,e*d*e=a*d^3>;
// generators/relations
Export