Copied to
clipboard

G = C5⋊D28order 280 = 23·5·7

The semidirect product of C5 and D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C352D4, C52D28, Dic5⋊D7, D142D5, D703C2, C10.5D14, C14.5D10, C70.5C22, C71(C5⋊D4), C2.5(D5×D7), (C10×D7)⋊2C2, (C7×Dic5)⋊3C2, SmallGroup(280,11)

Series: Derived Chief Lower central Upper central

C1C70 — C5⋊D28
C1C7C35C70C10×D7 — C5⋊D28
C35C70 — C5⋊D28
C1C2

Generators and relations for C5⋊D28
 G = < a,b,c | a5=b28=c2=1, bab-1=cac=a-1, cbc=b-1 >

14C2
70C2
5C4
7C22
35C22
14C10
14D5
2D7
10D7
35D4
7D10
7C2×C10
5C28
5D14
2C5×D7
2D35
7C5⋊D4
5D28

Smallest permutation representation of C5⋊D28
On 140 points
Generators in S140
(1 93 129 70 50)(2 51 71 130 94)(3 95 131 72 52)(4 53 73 132 96)(5 97 133 74 54)(6 55 75 134 98)(7 99 135 76 56)(8 29 77 136 100)(9 101 137 78 30)(10 31 79 138 102)(11 103 139 80 32)(12 33 81 140 104)(13 105 113 82 34)(14 35 83 114 106)(15 107 115 84 36)(16 37 57 116 108)(17 109 117 58 38)(18 39 59 118 110)(19 111 119 60 40)(20 41 61 120 112)(21 85 121 62 42)(22 43 63 122 86)(23 87 123 64 44)(24 45 65 124 88)(25 89 125 66 46)(26 47 67 126 90)(27 91 127 68 48)(28 49 69 128 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(29 92)(30 91)(31 90)(32 89)(33 88)(34 87)(35 86)(36 85)(37 112)(38 111)(39 110)(40 109)(41 108)(42 107)(43 106)(44 105)(45 104)(46 103)(47 102)(48 101)(49 100)(50 99)(51 98)(52 97)(53 96)(54 95)(55 94)(56 93)(57 120)(58 119)(59 118)(60 117)(61 116)(62 115)(63 114)(64 113)(65 140)(66 139)(67 138)(68 137)(69 136)(70 135)(71 134)(72 133)(73 132)(74 131)(75 130)(76 129)(77 128)(78 127)(79 126)(80 125)(81 124)(82 123)(83 122)(84 121)

G:=sub<Sym(140)| (1,93,129,70,50)(2,51,71,130,94)(3,95,131,72,52)(4,53,73,132,96)(5,97,133,74,54)(6,55,75,134,98)(7,99,135,76,56)(8,29,77,136,100)(9,101,137,78,30)(10,31,79,138,102)(11,103,139,80,32)(12,33,81,140,104)(13,105,113,82,34)(14,35,83,114,106)(15,107,115,84,36)(16,37,57,116,108)(17,109,117,58,38)(18,39,59,118,110)(19,111,119,60,40)(20,41,61,120,112)(21,85,121,62,42)(22,43,63,122,86)(23,87,123,64,44)(24,45,65,124,88)(25,89,125,66,46)(26,47,67,126,90)(27,91,127,68,48)(28,49,69,128,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,120)(58,119)(59,118)(60,117)(61,116)(62,115)(63,114)(64,113)(65,140)(66,139)(67,138)(68,137)(69,136)(70,135)(71,134)(72,133)(73,132)(74,131)(75,130)(76,129)(77,128)(78,127)(79,126)(80,125)(81,124)(82,123)(83,122)(84,121)>;

G:=Group( (1,93,129,70,50)(2,51,71,130,94)(3,95,131,72,52)(4,53,73,132,96)(5,97,133,74,54)(6,55,75,134,98)(7,99,135,76,56)(8,29,77,136,100)(9,101,137,78,30)(10,31,79,138,102)(11,103,139,80,32)(12,33,81,140,104)(13,105,113,82,34)(14,35,83,114,106)(15,107,115,84,36)(16,37,57,116,108)(17,109,117,58,38)(18,39,59,118,110)(19,111,119,60,40)(20,41,61,120,112)(21,85,121,62,42)(22,43,63,122,86)(23,87,123,64,44)(24,45,65,124,88)(25,89,125,66,46)(26,47,67,126,90)(27,91,127,68,48)(28,49,69,128,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,105)(45,104)(46,103)(47,102)(48,101)(49,100)(50,99)(51,98)(52,97)(53,96)(54,95)(55,94)(56,93)(57,120)(58,119)(59,118)(60,117)(61,116)(62,115)(63,114)(64,113)(65,140)(66,139)(67,138)(68,137)(69,136)(70,135)(71,134)(72,133)(73,132)(74,131)(75,130)(76,129)(77,128)(78,127)(79,126)(80,125)(81,124)(82,123)(83,122)(84,121) );

G=PermutationGroup([[(1,93,129,70,50),(2,51,71,130,94),(3,95,131,72,52),(4,53,73,132,96),(5,97,133,74,54),(6,55,75,134,98),(7,99,135,76,56),(8,29,77,136,100),(9,101,137,78,30),(10,31,79,138,102),(11,103,139,80,32),(12,33,81,140,104),(13,105,113,82,34),(14,35,83,114,106),(15,107,115,84,36),(16,37,57,116,108),(17,109,117,58,38),(18,39,59,118,110),(19,111,119,60,40),(20,41,61,120,112),(21,85,121,62,42),(22,43,63,122,86),(23,87,123,64,44),(24,45,65,124,88),(25,89,125,66,46),(26,47,67,126,90),(27,91,127,68,48),(28,49,69,128,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(29,92),(30,91),(31,90),(32,89),(33,88),(34,87),(35,86),(36,85),(37,112),(38,111),(39,110),(40,109),(41,108),(42,107),(43,106),(44,105),(45,104),(46,103),(47,102),(48,101),(49,100),(50,99),(51,98),(52,97),(53,96),(54,95),(55,94),(56,93),(57,120),(58,119),(59,118),(60,117),(61,116),(62,115),(63,114),(64,113),(65,140),(66,139),(67,138),(68,137),(69,136),(70,135),(71,134),(72,133),(73,132),(74,131),(75,130),(76,129),(77,128),(78,127),(79,126),(80,125),(81,124),(82,123),(83,122),(84,121)]])

37 conjugacy classes

class 1 2A2B2C 4 5A5B7A7B7C10A10B10C10D10E10F14A14B14C28A···28F35A···35F70A···70F
order122245577710101010101014141428···2835···3570···70
size1114701022222221414141422210···104···44···4

37 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2D4D5D7D10D14C5⋊D4D28D5×D7C5⋊D28
kernelC5⋊D28C7×Dic5C10×D7D70C35D14Dic5C14C10C7C5C2C1
# reps1111123234666

Matrix representation of C5⋊D28 in GL4(𝔽281) generated by

0100
2803700
0010
0001
,
16020400
22312100
004047
002341
,
280000
244100
00241234
004040
G:=sub<GL(4,GF(281))| [0,280,0,0,1,37,0,0,0,0,1,0,0,0,0,1],[160,223,0,0,204,121,0,0,0,0,40,234,0,0,47,1],[280,244,0,0,0,1,0,0,0,0,241,40,0,0,234,40] >;

C5⋊D28 in GAP, Magma, Sage, TeX

C_5\rtimes D_{28}
% in TeX

G:=Group("C5:D28");
// GroupNames label

G:=SmallGroup(280,11);
// by ID

G=gap.SmallGroup(280,11);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,61,26,328,6004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^28=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5⋊D28 in TeX

׿
×
𝔽