Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C6

Direct product G=N×Q with N=C22 and Q=S3×C6

Semidirect products G=N:Q with N=C22 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C6) = C6×S4φ: S3×C6/C6S3 ⊆ Aut C22183C2^2:(S3xC6)144,188
C222(S3×C6) = C2×S3×A4φ: S3×C6/D6C3 ⊆ Aut C22186+C2^2:2(S3xC6)144,190
C223(S3×C6) = C3×S3×D4φ: S3×C6/C3×S3C2 ⊆ Aut C22244C2^2:3(S3xC6)144,162
C224(S3×C6) = C6×C3⋊D4φ: S3×C6/C3×C6C2 ⊆ Aut C2224C2^2:4(S3xC6)144,167

Non-split extensions G=N.Q with N=C22 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C6) = C3×D42S3φ: S3×C6/C3×S3C2 ⊆ Aut C22244C2^2.1(S3xC6)144,163
C22.2(S3×C6) = C3×C4○D12φ: S3×C6/C3×C6C2 ⊆ Aut C22242C2^2.2(S3xC6)144,161
C22.3(S3×C6) = Dic3×C12central extension (φ=1)48C2^2.3(S3xC6)144,76
C22.4(S3×C6) = C3×Dic3⋊C4central extension (φ=1)48C2^2.4(S3xC6)144,77
C22.5(S3×C6) = C3×C4⋊Dic3central extension (φ=1)48C2^2.5(S3xC6)144,78
C22.6(S3×C6) = C3×D6⋊C4central extension (φ=1)48C2^2.6(S3xC6)144,79
C22.7(S3×C6) = C3×C6.D4central extension (φ=1)24C2^2.7(S3xC6)144,84
C22.8(S3×C6) = C6×Dic6central extension (φ=1)48C2^2.8(S3xC6)144,158
C22.9(S3×C6) = S3×C2×C12central extension (φ=1)48C2^2.9(S3xC6)144,159
C22.10(S3×C6) = C6×D12central extension (φ=1)48C2^2.10(S3xC6)144,160
C22.11(S3×C6) = Dic3×C2×C6central extension (φ=1)48C2^2.11(S3xC6)144,166