Extensions 1→N→G→Q→1 with N=C4 and Q=D18

Direct product G=N×Q with N=C4 and Q=D18
dρLabelID
C2×C4×D972C2xC4xD9144,38

Semidirect products G=N:Q with N=C4 and Q=D18
extensionφ:Q→Aut NdρLabelID
C41D18 = D4×D9φ: D18/D9C2 ⊆ Aut C4364+C4:1D18144,41
C42D18 = C2×D36φ: D18/C18C2 ⊆ Aut C472C4:2D18144,39

Non-split extensions G=N.Q with N=C4 and Q=D18
extensionφ:Q→Aut NdρLabelID
C4.1D18 = D4.D9φ: D18/D9C2 ⊆ Aut C4724-C4.1D18144,15
C4.2D18 = D4⋊D9φ: D18/D9C2 ⊆ Aut C4724+C4.2D18144,16
C4.3D18 = C9⋊Q16φ: D18/D9C2 ⊆ Aut C41444-C4.3D18144,17
C4.4D18 = Q82D9φ: D18/D9C2 ⊆ Aut C4724+C4.4D18144,18
C4.5D18 = D42D9φ: D18/D9C2 ⊆ Aut C4724-C4.5D18144,42
C4.6D18 = Q8×D9φ: D18/D9C2 ⊆ Aut C4724-C4.6D18144,43
C4.7D18 = Q83D9φ: D18/D9C2 ⊆ Aut C4724+C4.7D18144,44
C4.8D18 = Dic36φ: D18/C18C2 ⊆ Aut C41442-C4.8D18144,4
C4.9D18 = C72⋊C2φ: D18/C18C2 ⊆ Aut C4722C4.9D18144,7
C4.10D18 = D72φ: D18/C18C2 ⊆ Aut C4722+C4.10D18144,8
C4.11D18 = C2×Dic18φ: D18/C18C2 ⊆ Aut C4144C4.11D18144,37
C4.12D18 = C8×D9central extension (φ=1)722C4.12D18144,5
C4.13D18 = C8⋊D9central extension (φ=1)722C4.13D18144,6
C4.14D18 = C2×C9⋊C8central extension (φ=1)144C4.14D18144,9
C4.15D18 = C4.Dic9central extension (φ=1)722C4.15D18144,10
C4.16D18 = D365C2central extension (φ=1)722C4.16D18144,40

׿
×
𝔽