Extensions 1→N→G→Q→1 with N=C18 and Q=D4

Direct product G=N×Q with N=C18 and Q=D4
dρLabelID
D4×C1872D4xC18144,48

Semidirect products G=N:Q with N=C18 and Q=D4
extensionφ:Q→Aut NdρLabelID
C181D4 = C2×D36φ: D4/C4C2 ⊆ Aut C1872C18:1D4144,39
C182D4 = C2×C9⋊D4φ: D4/C22C2 ⊆ Aut C1872C18:2D4144,46

Non-split extensions G=N.Q with N=C18 and Q=D4
extensionφ:Q→Aut NdρLabelID
C18.1D4 = Dic36φ: D4/C4C2 ⊆ Aut C181442-C18.1D4144,4
C18.2D4 = C72⋊C2φ: D4/C4C2 ⊆ Aut C18722C18.2D4144,7
C18.3D4 = D72φ: D4/C4C2 ⊆ Aut C18722+C18.3D4144,8
C18.4D4 = C4⋊Dic9φ: D4/C4C2 ⊆ Aut C18144C18.4D4144,13
C18.5D4 = Dic9⋊C4φ: D4/C22C2 ⊆ Aut C18144C18.5D4144,12
C18.6D4 = D18⋊C4φ: D4/C22C2 ⊆ Aut C1872C18.6D4144,14
C18.7D4 = D4.D9φ: D4/C22C2 ⊆ Aut C18724-C18.7D4144,15
C18.8D4 = D4⋊D9φ: D4/C22C2 ⊆ Aut C18724+C18.8D4144,16
C18.9D4 = C9⋊Q16φ: D4/C22C2 ⊆ Aut C181444-C18.9D4144,17
C18.10D4 = Q82D9φ: D4/C22C2 ⊆ Aut C18724+C18.10D4144,18
C18.11D4 = C18.D4φ: D4/C22C2 ⊆ Aut C1872C18.11D4144,19
C18.12D4 = C9×C22⋊C4central extension (φ=1)72C18.12D4144,21
C18.13D4 = C9×C4⋊C4central extension (φ=1)144C18.13D4144,22
C18.14D4 = C9×D8central extension (φ=1)722C18.14D4144,25
C18.15D4 = C9×SD16central extension (φ=1)722C18.15D4144,26
C18.16D4 = C9×Q16central extension (φ=1)1442C18.16D4144,27

׿
×
𝔽