# Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C6

Direct product G=N×Q with N=C3×C9 and Q=C6
dρLabelID
C32×C18162C3^2xC18162,47

Semidirect products G=N:Q with N=C3×C9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C6 = C32⋊D9φ: C6/C1C6 ⊆ Aut C3×C927(C3xC9):1C6162,5
(C3×C9)⋊2C6 = He3.S3φ: C6/C1C6 ⊆ Aut C3×C9276+(C3xC9):2C6162,13
(C3×C9)⋊3C6 = He3.2S3φ: C6/C1C6 ⊆ Aut C3×C9276+(C3xC9):3C6162,15
(C3×C9)⋊4C6 = C3×C9⋊C6φ: C6/C1C6 ⊆ Aut C3×C9186(C3xC9):4C6162,36
(C3×C9)⋊5C6 = C33.S3φ: C6/C1C6 ⊆ Aut C3×C927(C3xC9):5C6162,42
(C3×C9)⋊6C6 = He3.4S3φ: C6/C1C6 ⊆ Aut C3×C9276+(C3xC9):6C6162,43
(C3×C9)⋊7C6 = S3×3- 1+2φ: C6/C1C6 ⊆ Aut C3×C9186(C3xC9):7C6162,37
(C3×C9)⋊8C6 = C2×C32⋊C9φ: C6/C2C3 ⊆ Aut C3×C954(C3xC9):8C6162,24
(C3×C9)⋊9C6 = C2×He3.C3φ: C6/C2C3 ⊆ Aut C3×C9543(C3xC9):9C6162,29
(C3×C9)⋊10C6 = C2×He3⋊C3φ: C6/C2C3 ⊆ Aut C3×C9543(C3xC9):10C6162,30
(C3×C9)⋊11C6 = C6×3- 1+2φ: C6/C2C3 ⊆ Aut C3×C954(C3xC9):11C6162,49
(C3×C9)⋊12C6 = C2×C9○He3φ: C6/C2C3 ⊆ Aut C3×C9543(C3xC9):12C6162,50
(C3×C9)⋊13C6 = S3×C3×C9φ: C6/C3C2 ⊆ Aut C3×C954(C3xC9):13C6162,33
(C3×C9)⋊14C6 = C32×D9φ: C6/C3C2 ⊆ Aut C3×C954(C3xC9):14C6162,32
(C3×C9)⋊15C6 = C3×C9⋊S3φ: C6/C3C2 ⊆ Aut C3×C954(C3xC9):15C6162,38

Non-split extensions G=N.Q with N=C3×C9 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C3×C9).C6 = C9⋊C18φ: C6/C1C6 ⊆ Aut C3×C9186(C3xC9).C6162,6
(C3×C9).2C6 = C2×C9⋊C9φ: C6/C2C3 ⊆ Aut C3×C9162(C3xC9).2C6162,25
(C3×C9).3C6 = C2×C3.He3φ: C6/C2C3 ⊆ Aut C3×C9543(C3xC9).3C6162,31
(C3×C9).4C6 = C2×C27⋊C3φ: C6/C2C3 ⊆ Aut C3×C9543(C3xC9).4C6162,27
(C3×C9).5C6 = S3×C27φ: C6/C3C2 ⊆ Aut C3×C9542(C3xC9).5C6162,8
(C3×C9).6C6 = C9×D9φ: C6/C3C2 ⊆ Aut C3×C9182(C3xC9).6C6162,3

׿
×
𝔽