Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C2xC4

Direct product G=NxQ with N=C2xC10 and Q=C2xC4
dρLabelID
C23xC20160C2^3xC20160,228

Semidirect products G=N:Q with N=C2xC10 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C2xC10):(C2xC4) = D4xF5φ: C2xC4/C1C2xC4 ⊆ Aut C2xC10208+(C2xC10):(C2xC4)160,207
(C2xC10):2(C2xC4) = C2xC22:F5φ: C2xC4/C2C4 ⊆ Aut C2xC1040(C2xC10):2(C2xC4)160,212
(C2xC10):3(C2xC4) = C23xF5φ: C2xC4/C2C4 ⊆ Aut C2xC1040(C2xC10):3(C2xC4)160,236
(C2xC10):4(C2xC4) = D5xC22:C4φ: C2xC4/C2C22 ⊆ Aut C2xC1040(C2xC10):4(C2xC4)160,101
(C2xC10):5(C2xC4) = Dic5:4D4φ: C2xC4/C2C22 ⊆ Aut C2xC1080(C2xC10):5(C2xC4)160,102
(C2xC10):6(C2xC4) = D4xDic5φ: C2xC4/C2C22 ⊆ Aut C2xC1080(C2xC10):6(C2xC4)160,155
(C2xC10):7(C2xC4) = D4xC20φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10):7(C2xC4)160,179
(C2xC10):8(C2xC4) = C4xC5:D4φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10):8(C2xC4)160,149
(C2xC10):9(C2xC4) = D5xC22xC4φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10):9(C2xC4)160,214
(C2xC10):10(C2xC4) = C10xC22:C4φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10):10(C2xC4)160,176
(C2xC10):11(C2xC4) = C2xC23.D5φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10):11(C2xC4)160,173
(C2xC10):12(C2xC4) = C23xDic5φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10):12(C2xC4)160,226

Non-split extensions G=N.Q with N=C2xC10 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C2xC10).(C2xC4) = D4.F5φ: C2xC4/C1C2xC4 ⊆ Aut C2xC10808-(C2xC10).(C2xC4)160,206
(C2xC10).2(C2xC4) = D10.D4φ: C2xC4/C2C4 ⊆ Aut C2xC10404+(C2xC10).2(C2xC4)160,74
(C2xC10).3(C2xC4) = C4xC5:C8φ: C2xC4/C2C4 ⊆ Aut C2xC10160(C2xC10).3(C2xC4)160,75
(C2xC10).4(C2xC4) = C20:C8φ: C2xC4/C2C4 ⊆ Aut C2xC10160(C2xC10).4(C2xC4)160,76
(C2xC10).5(C2xC4) = C10.C42φ: C2xC4/C2C4 ⊆ Aut C2xC10160(C2xC10).5(C2xC4)160,77
(C2xC10).6(C2xC4) = D10:C8φ: C2xC4/C2C4 ⊆ Aut C2xC1080(C2xC10).6(C2xC4)160,78
(C2xC10).7(C2xC4) = Dic5:C8φ: C2xC4/C2C4 ⊆ Aut C2xC10160(C2xC10).7(C2xC4)160,79
(C2xC10).8(C2xC4) = Dic5.D4φ: C2xC4/C2C4 ⊆ Aut C2xC10804-(C2xC10).8(C2xC4)160,80
(C2xC10).9(C2xC4) = D10.3Q8φ: C2xC4/C2C4 ⊆ Aut C2xC1040(C2xC10).9(C2xC4)160,81
(C2xC10).10(C2xC4) = C23:F5φ: C2xC4/C2C4 ⊆ Aut C2xC10404(C2xC10).10(C2xC4)160,86
(C2xC10).11(C2xC4) = C23.2F5φ: C2xC4/C2C4 ⊆ Aut C2xC1080(C2xC10).11(C2xC4)160,87
(C2xC10).12(C2xC4) = C23.F5φ: C2xC4/C2C4 ⊆ Aut C2xC10404(C2xC10).12(C2xC4)160,88
(C2xC10).13(C2xC4) = C2xD5:C8φ: C2xC4/C2C4 ⊆ Aut C2xC1080(C2xC10).13(C2xC4)160,200
(C2xC10).14(C2xC4) = C2xC4.F5φ: C2xC4/C2C4 ⊆ Aut C2xC1080(C2xC10).14(C2xC4)160,201
(C2xC10).15(C2xC4) = D5:M4(2)φ: C2xC4/C2C4 ⊆ Aut C2xC10404(C2xC10).15(C2xC4)160,202
(C2xC10).16(C2xC4) = C2xC4xF5φ: C2xC4/C2C4 ⊆ Aut C2xC1040(C2xC10).16(C2xC4)160,203
(C2xC10).17(C2xC4) = C2xC4:F5φ: C2xC4/C2C4 ⊆ Aut C2xC1040(C2xC10).17(C2xC4)160,204
(C2xC10).18(C2xC4) = D10.C23φ: C2xC4/C2C4 ⊆ Aut C2xC10404(C2xC10).18(C2xC4)160,205
(C2xC10).19(C2xC4) = C22xC5:C8φ: C2xC4/C2C4 ⊆ Aut C2xC10160(C2xC10).19(C2xC4)160,210
(C2xC10).20(C2xC4) = C2xC22.F5φ: C2xC4/C2C4 ⊆ Aut C2xC1080(C2xC10).20(C2xC4)160,211
(C2xC10).21(C2xC4) = C23.1D10φ: C2xC4/C2C22 ⊆ Aut C2xC10404(C2xC10).21(C2xC4)160,13
(C2xC10).22(C2xC4) = C20.46D4φ: C2xC4/C2C22 ⊆ Aut C2xC10404+(C2xC10).22(C2xC4)160,30
(C2xC10).23(C2xC4) = C4.12D20φ: C2xC4/C2C22 ⊆ Aut C2xC10804-(C2xC10).23(C2xC4)160,31
(C2xC10).24(C2xC4) = C23.11D10φ: C2xC4/C2C22 ⊆ Aut C2xC1080(C2xC10).24(C2xC4)160,98
(C2xC10).25(C2xC4) = D5xM4(2)φ: C2xC4/C2C22 ⊆ Aut C2xC10404(C2xC10).25(C2xC4)160,127
(C2xC10).26(C2xC4) = D20.2C4φ: C2xC4/C2C22 ⊆ Aut C2xC10804(C2xC10).26(C2xC4)160,128
(C2xC10).27(C2xC4) = D4.Dic5φ: C2xC4/C2C22 ⊆ Aut C2xC10804(C2xC10).27(C2xC4)160,169
(C2xC10).28(C2xC4) = C5xC8oD4φ: C2xC4/C4C2 ⊆ Aut C2xC10802(C2xC10).28(C2xC4)160,192
(C2xC10).29(C2xC4) = C8xDic5φ: C2xC4/C4C2 ⊆ Aut C2xC10160(C2xC10).29(C2xC4)160,20
(C2xC10).30(C2xC4) = C20.8Q8φ: C2xC4/C4C2 ⊆ Aut C2xC10160(C2xC10).30(C2xC4)160,21
(C2xC10).31(C2xC4) = C40:8C4φ: C2xC4/C4C2 ⊆ Aut C2xC10160(C2xC10).31(C2xC4)160,22
(C2xC10).32(C2xC4) = D10:1C8φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10).32(C2xC4)160,27
(C2xC10).33(C2xC4) = C10.10C42φ: C2xC4/C4C2 ⊆ Aut C2xC10160(C2xC10).33(C2xC4)160,38
(C2xC10).34(C2xC4) = D5xC2xC8φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10).34(C2xC4)160,120
(C2xC10).35(C2xC4) = C2xC8:D5φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10).35(C2xC4)160,121
(C2xC10).36(C2xC4) = D20.3C4φ: C2xC4/C4C2 ⊆ Aut C2xC10802(C2xC10).36(C2xC4)160,122
(C2xC10).37(C2xC4) = C2xC10.D4φ: C2xC4/C4C2 ⊆ Aut C2xC10160(C2xC10).37(C2xC4)160,144
(C2xC10).38(C2xC4) = C2xD10:C4φ: C2xC4/C4C2 ⊆ Aut C2xC1080(C2xC10).38(C2xC4)160,148
(C2xC10).39(C2xC4) = C5xC23:C4φ: C2xC4/C22C2 ⊆ Aut C2xC10404(C2xC10).39(C2xC4)160,49
(C2xC10).40(C2xC4) = C5xC4.D4φ: C2xC4/C22C2 ⊆ Aut C2xC10404(C2xC10).40(C2xC4)160,50
(C2xC10).41(C2xC4) = C5xC4.10D4φ: C2xC4/C22C2 ⊆ Aut C2xC10804(C2xC10).41(C2xC4)160,51
(C2xC10).42(C2xC4) = C5xC42:C2φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10).42(C2xC4)160,178
(C2xC10).43(C2xC4) = C10xM4(2)φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10).43(C2xC4)160,191
(C2xC10).44(C2xC4) = C4xC5:2C8φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).44(C2xC4)160,9
(C2xC10).45(C2xC4) = C42.D5φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).45(C2xC4)160,10
(C2xC10).46(C2xC4) = C20:3C8φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).46(C2xC4)160,11
(C2xC10).47(C2xC4) = C20.55D4φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10).47(C2xC4)160,37
(C2xC10).48(C2xC4) = C20.D4φ: C2xC4/C22C2 ⊆ Aut C2xC10404(C2xC10).48(C2xC4)160,40
(C2xC10).49(C2xC4) = C23:Dic5φ: C2xC4/C22C2 ⊆ Aut C2xC10404(C2xC10).49(C2xC4)160,41
(C2xC10).50(C2xC4) = C20.10D4φ: C2xC4/C22C2 ⊆ Aut C2xC10804(C2xC10).50(C2xC4)160,43
(C2xC10).51(C2xC4) = C22xC5:2C8φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).51(C2xC4)160,141
(C2xC10).52(C2xC4) = C2xC4.Dic5φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10).52(C2xC4)160,142
(C2xC10).53(C2xC4) = C2xC4xDic5φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).53(C2xC4)160,143
(C2xC10).54(C2xC4) = C2xC4:Dic5φ: C2xC4/C22C2 ⊆ Aut C2xC10160(C2xC10).54(C2xC4)160,146
(C2xC10).55(C2xC4) = C23.21D10φ: C2xC4/C22C2 ⊆ Aut C2xC1080(C2xC10).55(C2xC4)160,147
(C2xC10).56(C2xC4) = C5xC2.C42central extension (φ=1)160(C2xC10).56(C2xC4)160,45
(C2xC10).57(C2xC4) = C5xC8:C4central extension (φ=1)160(C2xC10).57(C2xC4)160,47
(C2xC10).58(C2xC4) = C5xC22:C8central extension (φ=1)80(C2xC10).58(C2xC4)160,48
(C2xC10).59(C2xC4) = C5xC4:C8central extension (φ=1)160(C2xC10).59(C2xC4)160,55
(C2xC10).60(C2xC4) = C10xC4:C4central extension (φ=1)160(C2xC10).60(C2xC4)160,177

׿
x
:
Z
F
o
wr
Q
<