extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D10 = C20.46D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 40 | 4+ | (C2xC4).1D10 | 160,30 |
(C2×C4).2D10 = C4.12D20 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4- | (C2xC4).2D10 | 160,31 |
(C2×C4).3D10 = C20.D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).3D10 | 160,40 |
(C2×C4).4D10 = C20.10D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).4D10 | 160,43 |
(C2×C4).5D10 = Dic5.14D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).5D10 | 160,99 |
(C2×C4).6D10 = D10.12D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).6D10 | 160,104 |
(C2×C4).7D10 = D10⋊D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).7D10 | 160,105 |
(C2×C4).8D10 = Dic5.5D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).8D10 | 160,106 |
(C2×C4).9D10 = C22.D20 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).9D10 | 160,107 |
(C2×C4).10D10 = Dic5.Q8 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).10D10 | 160,110 |
(C2×C4).11D10 = D10.13D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).11D10 | 160,115 |
(C2×C4).12D10 = C4⋊D20 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).12D10 | 160,116 |
(C2×C4).13D10 = D10⋊Q8 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).13D10 | 160,117 |
(C2×C4).14D10 = D10⋊2Q8 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).14D10 | 160,118 |
(C2×C4).15D10 = C8⋊D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 40 | 4+ | (C2xC4).15D10 | 160,129 |
(C2×C4).16D10 = C8.D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4- | (C2xC4).16D10 | 160,130 |
(C2×C4).17D10 = D4.D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).17D10 | 160,153 |
(C2×C4).18D10 = C23.18D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).18D10 | 160,156 |
(C2×C4).19D10 = Dic5⋊D4 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).19D10 | 160,160 |
(C2×C4).20D10 = C20.C23 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).20D10 | 160,163 |
(C2×C4).21D10 = D10⋊3Q8 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).21D10 | 160,167 |
(C2×C4).22D10 = D4⋊D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 40 | 4+ | (C2xC4).22D10 | 160,170 |
(C2×C4).23D10 = D4.9D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4- | (C2xC4).23D10 | 160,172 |
(C2×C4).24D10 = Q8.10D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).24D10 | 160,222 |
(C2×C4).25D10 = D4.10D10 | φ: D10/C5 → C22 ⊆ Aut C2×C4 | 80 | 4- | (C2xC4).25D10 | 160,225 |
(C2×C4).26D10 = C23.11D10 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).26D10 | 160,98 |
(C2×C4).27D10 = C23.D10 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).27D10 | 160,100 |
(C2×C4).28D10 = Dic5⋊4D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).28D10 | 160,102 |
(C2×C4).29D10 = Dic5⋊3Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).29D10 | 160,108 |
(C2×C4).30D10 = D5×C4⋊C4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).30D10 | 160,112 |
(C2×C4).31D10 = D20⋊8C4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).31D10 | 160,114 |
(C2×C4).32D10 = C4⋊C4⋊D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).32D10 | 160,119 |
(C2×C4).33D10 = C10.D8 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).33D10 | 160,14 |
(C2×C4).34D10 = C20.Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).34D10 | 160,15 |
(C2×C4).35D10 = D20⋊6C4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).35D10 | 160,16 |
(C2×C4).36D10 = C10.Q16 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).36D10 | 160,17 |
(C2×C4).37D10 = C20.53D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).37D10 | 160,29 |
(C2×C4).38D10 = D20⋊7C4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).38D10 | 160,32 |
(C2×C4).39D10 = D4⋊Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).39D10 | 160,39 |
(C2×C4).40D10 = Q8⋊Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).40D10 | 160,42 |
(C2×C4).41D10 = D4⋊2Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).41D10 | 160,44 |
(C2×C4).42D10 = C20⋊Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).42D10 | 160,109 |
(C2×C4).43D10 = C4.Dic10 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).43D10 | 160,111 |
(C2×C4).44D10 = C4⋊C4⋊7D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).44D10 | 160,113 |
(C2×C4).45D10 = D5×M4(2) | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).45D10 | 160,127 |
(C2×C4).46D10 = D20.2C4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).46D10 | 160,128 |
(C2×C4).47D10 = C2×D4⋊D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).47D10 | 160,152 |
(C2×C4).48D10 = C2×D4.D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).48D10 | 160,154 |
(C2×C4).49D10 = D4×Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).49D10 | 160,155 |
(C2×C4).50D10 = C20.17D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).50D10 | 160,157 |
(C2×C4).51D10 = C20⋊2D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).51D10 | 160,159 |
(C2×C4).52D10 = C20⋊D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).52D10 | 160,161 |
(C2×C4).53D10 = C2×Q8⋊D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).53D10 | 160,162 |
(C2×C4).54D10 = C2×C5⋊Q16 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).54D10 | 160,164 |
(C2×C4).55D10 = Dic5⋊Q8 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).55D10 | 160,165 |
(C2×C4).56D10 = Q8×Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).56D10 | 160,166 |
(C2×C4).57D10 = C20.23D4 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).57D10 | 160,168 |
(C2×C4).58D10 = D4.Dic5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).58D10 | 160,169 |
(C2×C4).59D10 = D4.8D10 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).59D10 | 160,171 |
(C2×C4).60D10 = C2×D4⋊2D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).60D10 | 160,218 |
(C2×C4).61D10 = C2×Q8×D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).61D10 | 160,220 |
(C2×C4).62D10 = C2×Q8⋊2D5 | φ: D10/D5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).62D10 | 160,221 |
(C2×C4).63D10 = C42⋊2D5 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).63D10 | 160,97 |
(C2×C4).64D10 = C2×C10.D4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).64D10 | 160,144 |
(C2×C4).65D10 = C23.23D10 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).65D10 | 160,150 |
(C2×C4).66D10 = D20⋊4C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 40 | 2 | (C2xC4).66D10 | 160,12 |
(C2×C4).67D10 = C20.44D4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).67D10 | 160,23 |
(C2×C4).68D10 = C40⋊6C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).68D10 | 160,24 |
(C2×C4).69D10 = C40⋊5C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).69D10 | 160,25 |
(C2×C4).70D10 = C40.6C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | 2 | (C2xC4).70D10 | 160,26 |
(C2×C4).71D10 = D20⋊5C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).71D10 | 160,28 |
(C2×C4).72D10 = C4×Dic10 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).72D10 | 160,89 |
(C2×C4).73D10 = C20⋊2Q8 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).73D10 | 160,90 |
(C2×C4).74D10 = C20.6Q8 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).74D10 | 160,91 |
(C2×C4).75D10 = C4×D20 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).75D10 | 160,94 |
(C2×C4).76D10 = C20⋊4D4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).76D10 | 160,95 |
(C2×C4).77D10 = C4.D20 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).77D10 | 160,96 |
(C2×C4).78D10 = D20.3C4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | 2 | (C2xC4).78D10 | 160,122 |
(C2×C4).79D10 = C2×C40⋊C2 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).79D10 | 160,123 |
(C2×C4).80D10 = C2×D40 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).80D10 | 160,124 |
(C2×C4).81D10 = D40⋊7C2 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | 2 | (C2xC4).81D10 | 160,125 |
(C2×C4).82D10 = C2×Dic20 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).82D10 | 160,126 |
(C2×C4).83D10 = C20.48D4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).83D10 | 160,145 |
(C2×C4).84D10 = C2×C4⋊Dic5 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).84D10 | 160,146 |
(C2×C4).85D10 = C20⋊7D4 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).85D10 | 160,151 |
(C2×C4).86D10 = C22×Dic10 | φ: D10/C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).86D10 | 160,213 |
(C2×C4).87D10 = C4×C5⋊2C8 | central extension (φ=1) | 160 | | (C2xC4).87D10 | 160,9 |
(C2×C4).88D10 = C42.D5 | central extension (φ=1) | 160 | | (C2xC4).88D10 | 160,10 |
(C2×C4).89D10 = C20⋊3C8 | central extension (φ=1) | 160 | | (C2xC4).89D10 | 160,11 |
(C2×C4).90D10 = C8×Dic5 | central extension (φ=1) | 160 | | (C2xC4).90D10 | 160,20 |
(C2×C4).91D10 = C20.8Q8 | central extension (φ=1) | 160 | | (C2xC4).91D10 | 160,21 |
(C2×C4).92D10 = C40⋊8C4 | central extension (φ=1) | 160 | | (C2xC4).92D10 | 160,22 |
(C2×C4).93D10 = D10⋊1C8 | central extension (φ=1) | 80 | | (C2xC4).93D10 | 160,27 |
(C2×C4).94D10 = C20.55D4 | central extension (φ=1) | 80 | | (C2xC4).94D10 | 160,37 |
(C2×C4).95D10 = D5×C42 | central extension (φ=1) | 80 | | (C2xC4).95D10 | 160,92 |
(C2×C4).96D10 = C42⋊D5 | central extension (φ=1) | 80 | | (C2xC4).96D10 | 160,93 |
(C2×C4).97D10 = D5×C2×C8 | central extension (φ=1) | 80 | | (C2xC4).97D10 | 160,120 |
(C2×C4).98D10 = C2×C8⋊D5 | central extension (φ=1) | 80 | | (C2xC4).98D10 | 160,121 |
(C2×C4).99D10 = C22×C5⋊2C8 | central extension (φ=1) | 160 | | (C2xC4).99D10 | 160,141 |
(C2×C4).100D10 = C2×C4.Dic5 | central extension (φ=1) | 80 | | (C2xC4).100D10 | 160,142 |
(C2×C4).101D10 = C2×C4×Dic5 | central extension (φ=1) | 160 | | (C2xC4).101D10 | 160,143 |
(C2×C4).102D10 = C23.21D10 | central extension (φ=1) | 80 | | (C2xC4).102D10 | 160,147 |
(C2×C4).103D10 = C4×C5⋊D4 | central extension (φ=1) | 80 | | (C2xC4).103D10 | 160,149 |