direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C9⋊C9, C18⋊C9, C9⋊2C18, C6.23- 1+2, (C3×C9).2C6, C6.2(C3×C9), C3.2(C3×C18), (C3×C18).1C3, (C3×C6).7C32, C32.10(C3×C6), C3.2(C2×3- 1+2), SmallGroup(162,25)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C9 — C9⋊C9 — C2×C9⋊C9 |
Generators and relations for C2×C9⋊C9
G = < a,b,c | a2=b9=c9=1, ab=ba, ac=ca, cbc-1=b7 >
(1 114)(2 115)(3 116)(4 117)(5 109)(6 110)(7 111)(8 112)(9 113)(10 90)(11 82)(12 83)(13 84)(14 85)(15 86)(16 87)(17 88)(18 89)(19 99)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 102)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 100)(36 101)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 78 51 31 93 66 39 87 60)(2 73 49 32 97 64 40 82 58)(3 77 47 33 92 71 41 86 56)(4 81 54 34 96 69 42 90 63)(5 76 52 35 91 67 43 85 61)(6 80 50 36 95 65 44 89 59)(7 75 48 28 99 72 45 84 57)(8 79 46 29 94 70 37 88 55)(9 74 53 30 98 68 38 83 62)(10 144 117 162 135 108 25 150 123)(11 139 115 154 130 106 26 145 121)(12 143 113 155 134 104 27 149 119)(13 138 111 156 129 102 19 153 126)(14 142 109 157 133 100 20 148 124)(15 137 116 158 128 107 21 152 122)(16 141 114 159 132 105 22 147 120)(17 136 112 160 127 103 23 151 118)(18 140 110 161 131 101 24 146 125)
G:=sub<Sym(162)| (1,114)(2,115)(3,116)(4,117)(5,109)(6,110)(7,111)(8,112)(9,113)(10,90)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,99)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,78,51,31,93,66,39,87,60)(2,73,49,32,97,64,40,82,58)(3,77,47,33,92,71,41,86,56)(4,81,54,34,96,69,42,90,63)(5,76,52,35,91,67,43,85,61)(6,80,50,36,95,65,44,89,59)(7,75,48,28,99,72,45,84,57)(8,79,46,29,94,70,37,88,55)(9,74,53,30,98,68,38,83,62)(10,144,117,162,135,108,25,150,123)(11,139,115,154,130,106,26,145,121)(12,143,113,155,134,104,27,149,119)(13,138,111,156,129,102,19,153,126)(14,142,109,157,133,100,20,148,124)(15,137,116,158,128,107,21,152,122)(16,141,114,159,132,105,22,147,120)(17,136,112,160,127,103,23,151,118)(18,140,110,161,131,101,24,146,125)>;
G:=Group( (1,114)(2,115)(3,116)(4,117)(5,109)(6,110)(7,111)(8,112)(9,113)(10,90)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,99)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,78,51,31,93,66,39,87,60)(2,73,49,32,97,64,40,82,58)(3,77,47,33,92,71,41,86,56)(4,81,54,34,96,69,42,90,63)(5,76,52,35,91,67,43,85,61)(6,80,50,36,95,65,44,89,59)(7,75,48,28,99,72,45,84,57)(8,79,46,29,94,70,37,88,55)(9,74,53,30,98,68,38,83,62)(10,144,117,162,135,108,25,150,123)(11,139,115,154,130,106,26,145,121)(12,143,113,155,134,104,27,149,119)(13,138,111,156,129,102,19,153,126)(14,142,109,157,133,100,20,148,124)(15,137,116,158,128,107,21,152,122)(16,141,114,159,132,105,22,147,120)(17,136,112,160,127,103,23,151,118)(18,140,110,161,131,101,24,146,125) );
G=PermutationGroup([[(1,114),(2,115),(3,116),(4,117),(5,109),(6,110),(7,111),(8,112),(9,113),(10,90),(11,82),(12,83),(13,84),(14,85),(15,86),(16,87),(17,88),(18,89),(19,99),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,102),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,100),(36,101),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,78,51,31,93,66,39,87,60),(2,73,49,32,97,64,40,82,58),(3,77,47,33,92,71,41,86,56),(4,81,54,34,96,69,42,90,63),(5,76,52,35,91,67,43,85,61),(6,80,50,36,95,65,44,89,59),(7,75,48,28,99,72,45,84,57),(8,79,46,29,94,70,37,88,55),(9,74,53,30,98,68,38,83,62),(10,144,117,162,135,108,25,150,123),(11,139,115,154,130,106,26,145,121),(12,143,113,155,134,104,27,149,119),(13,138,111,156,129,102,19,153,126),(14,142,109,157,133,100,20,148,124),(15,137,116,158,128,107,21,152,122),(16,141,114,159,132,105,22,147,120),(17,136,112,160,127,103,23,151,118),(18,140,110,161,131,101,24,146,125)]])
C2×C9⋊C9 is a maximal subgroup of
C9⋊C36 C18×3- 1+2
66 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 6A | ··· | 6H | 9A | ··· | 9X | 18A | ··· | 18X |
order | 1 | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||
image | C1 | C2 | C3 | C6 | C9 | C18 | 3- 1+2 | C2×3- 1+2 |
kernel | C2×C9⋊C9 | C9⋊C9 | C3×C18 | C3×C9 | C18 | C9 | C6 | C3 |
# reps | 1 | 1 | 8 | 8 | 18 | 18 | 6 | 6 |
Matrix representation of C2×C9⋊C9 ►in GL4(𝔽19) generated by
18 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 0 | 7 | 0 |
0 | 8 | 18 | 9 |
0 | 1 | 0 | 1 |
5 | 0 | 0 | 0 |
0 | 11 | 8 | 15 |
0 | 2 | 8 | 1 |
0 | 15 | 18 | 0 |
G:=sub<GL(4,GF(19))| [18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,0,8,1,0,7,18,0,0,0,9,1],[5,0,0,0,0,11,2,15,0,8,8,18,0,15,1,0] >;
C2×C9⋊C9 in GAP, Magma, Sage, TeX
C_2\times C_9\rtimes C_9
% in TeX
G:=Group("C2xC9:C9");
// GroupNames label
G:=SmallGroup(162,25);
// by ID
G=gap.SmallGroup(162,25);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,276,187,57]);
// Polycyclic
G:=Group<a,b,c|a^2=b^9=c^9=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^7>;
// generators/relations
Export