Extensions 1→N→G→Q→1 with N=C5×D4 and Q=C4

Direct product G=N×Q with N=C5×D4 and Q=C4
dρLabelID
D4×C2080D4xC20160,179

Semidirect products G=N:Q with N=C5×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1C4 = D20⋊C4φ: C4/C1C4 ⊆ Out C5×D4408+(C5xD4):1C4160,82
(C5×D4)⋊2C4 = D4⋊F5φ: C4/C1C4 ⊆ Out C5×D4408-(C5xD4):2C4160,83
(C5×D4)⋊3C4 = D4×F5φ: C4/C1C4 ⊆ Out C5×D4208+(C5xD4):3C4160,207
(C5×D4)⋊4C4 = D4⋊Dic5φ: C4/C2C2 ⊆ Out C5×D480(C5xD4):4C4160,39
(C5×D4)⋊5C4 = D42Dic5φ: C4/C2C2 ⊆ Out C5×D4404(C5xD4):5C4160,44
(C5×D4)⋊6C4 = D4×Dic5φ: C4/C2C2 ⊆ Out C5×D480(C5xD4):6C4160,155
(C5×D4)⋊7C4 = C5×D4⋊C4φ: C4/C2C2 ⊆ Out C5×D480(C5xD4):7C4160,52
(C5×D4)⋊8C4 = C5×C4≀C2φ: C4/C2C2 ⊆ Out C5×D4402(C5xD4):8C4160,54

Non-split extensions G=N.Q with N=C5×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×D4).C4 = D4.F5φ: C4/C1C4 ⊆ Out C5×D4808-(C5xD4).C4160,206
(C5×D4).2C4 = D4.Dic5φ: C4/C2C2 ⊆ Out C5×D4804(C5xD4).2C4160,169
(C5×D4).3C4 = C5×C8○D4φ: trivial image802(C5xD4).3C4160,192

׿
×
𝔽