direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4×F5, D20⋊3C4, D10.12C23, C5⋊(C4×D4), C20⋊(C2×C4), C5⋊D4⋊C4, D10⋊(C2×C4), C4⋊F5⋊2C2, C4⋊1(C2×F5), (C5×D4)⋊3C4, Dic5⋊(C2×C4), (C4×F5)⋊3C2, (D4×D5).3C2, D5.2(C2×D4), C22⋊F5⋊3C2, C22⋊1(C2×F5), (C22×F5)⋊1C2, C2.9(C22×F5), D5.2(C4○D4), C10.8(C22×C4), (C2×F5).3C22, (C4×D5).12C22, (C22×D5).16C22, (C2×C10)⋊(C2×C4), Aut(D20), Hol(C20), SmallGroup(160,207)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×F5
G = < a,b,c,d | a4=b2=c5=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 332 in 94 conjugacy classes, 38 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, D4, D4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, F5, F5, D10, D10, D10, C2×C10, C4×D4, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C2×F5, C2×F5, C22×D5, C4×F5, C4⋊F5, C22⋊F5, D4×D5, C22×F5, D4×F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×F5, C22×F5, D4×F5
Character table of D4×F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 10A | 10B | 10C | 20 | |
size | 1 | 1 | 2 | 2 | 5 | 5 | 10 | 10 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | i | 1 | i | -i | -i | i | -i | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | -1 | -i | i | -i | i | i | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | -1 | i | -i | i | -i | -i | 1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | -i | 1 | -i | i | i | -i | i | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | i | i | -i | i | 1 | -i | i | i | -i | -i | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | -i | -i | -1 | i | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | i | i | -1 | -i | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -i | -i | i | -i | 1 | i | -i | -i | i | i | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ17 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ22 | 4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from C2×F5 |
ρ24 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ25 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | orthogonal faithful |
(1 11 6 16)(2 12 7 17)(3 13 8 18)(4 14 9 19)(5 15 10 20)
(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 18 15 19)(13 20 14 17)
G:=sub<Sym(20)| (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20), (11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17)>;
G:=Group( (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20), (11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,18,15,19)(13,20,14,17) );
G=PermutationGroup([[(1,11,6,16),(2,12,7,17),(3,13,8,18),(4,14,9,19),(5,15,10,20)], [(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,18,15,19),(13,20,14,17)]])
G:=TransitiveGroup(20,42);
D4×F5 is a maximal subgroup of
D40⋊C4 SD16⋊F5 D10.C24 D5.2+ 1+4 D60⋊3C4 C3⋊D4⋊F5
D4×F5 is a maximal quotient of
C5⋊C8⋊8D4 C5⋊C8⋊D4 D10⋊M4(2) Dic5⋊M4(2) D10⋊(C4⋊C4) C10.(C4×D4) D20⋊2C8 D10⋊2M4(2) C20⋊M4(2) C4⋊C4⋊5F5 C20⋊(C4⋊C4) D40⋊C4 D8⋊5F5 D8⋊F5 SD16⋊F5 SD16⋊3F5 SD16⋊2F5 Dic20⋊C4 Q16⋊5F5 Q16⋊F5 C5⋊C8⋊7D4 C20⋊2M4(2) (C2×F5)⋊D4 C2.(D4×F5) D60⋊3C4 C3⋊D4⋊F5
Matrix representation of D4×F5 ►in GL6(𝔽41)
40 | 39 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,1,0,0,0,0,39,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,1,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;
D4×F5 in GAP, Magma, Sage, TeX
D_4\times F_5
% in TeX
G:=Group("D4xF5");
// GroupNames label
G:=SmallGroup(160,207);
// by ID
G=gap.SmallGroup(160,207);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,188,2309,599]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export