# Extensions 1→N→G→Q→1 with N=C8×D5 and Q=C2

Direct product G=N×Q with N=C8×D5 and Q=C2
dρLabelID
D5×C2×C880D5xC2xC8160,120

Semidirect products G=N:Q with N=C8×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D5)⋊1C2 = D5×D8φ: C2/C1C2 ⊆ Out C8×D5404+(C8xD5):1C2160,131
(C8×D5)⋊2C2 = D83D5φ: C2/C1C2 ⊆ Out C8×D5804-(C8xD5):2C2160,133
(C8×D5)⋊3C2 = Q8.D10φ: C2/C1C2 ⊆ Out C8×D5804+(C8xD5):3C2160,140
(C8×D5)⋊4C2 = D5×SD16φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5):4C2160,134
(C8×D5)⋊5C2 = SD163D5φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5):5C2160,137
(C8×D5)⋊6C2 = D20.3C4φ: C2/C1C2 ⊆ Out C8×D5802(C8xD5):6C2160,122
(C8×D5)⋊7C2 = D5×M4(2)φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5):7C2160,127
(C8×D5)⋊8C2 = D20.2C4φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5):8C2160,128

Non-split extensions G=N.Q with N=C8×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×D5).1C2 = D5×Q16φ: C2/C1C2 ⊆ Out C8×D5804-(C8xD5).1C2160,138
(C8×D5).2C2 = C80⋊C2φ: C2/C1C2 ⊆ Out C8×D5802(C8xD5).2C2160,5
(C8×D5).3C2 = D5.D8φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5).3C2160,69
(C8×D5).4C2 = D10.Q8φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5).4C2160,71
(C8×D5).5C2 = C40⋊C4φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5).5C2160,68
(C8×D5).6C2 = C40.C4φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5).6C2160,70
(C8×D5).7C2 = D5⋊C16φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5).7C2160,64
(C8×D5).8C2 = C8.F5φ: C2/C1C2 ⊆ Out C8×D5804(C8xD5).8C2160,65
(C8×D5).9C2 = C8×F5φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5).9C2160,66
(C8×D5).10C2 = C8⋊F5φ: C2/C1C2 ⊆ Out C8×D5404(C8xD5).10C2160,67
(C8×D5).11C2 = D5×C16φ: trivial image802(C8xD5).11C2160,4

׿
×
𝔽