metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: SD16⋊3D5, D4.5D10, D10.6D4, C8.11D10, Q8.2D10, C20.7C23, C40.11C22, Dic5.25D4, D20.3C22, Dic10.3C22, D4⋊D5⋊4C2, (C8×D5)⋊5C2, C5⋊3(C4○D8), C40⋊C2⋊6C2, C5⋊Q16⋊2C2, C2.21(D4×D5), D4⋊2D5⋊3C2, Q8⋊2D5⋊2C2, (C5×SD16)⋊4C2, C10.33(C2×D4), C4.7(C22×D5), C5⋊2C8.6C22, (C5×D4).5C22, (C5×Q8).2C22, (C4×D5).18C22, SmallGroup(160,137)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for SD16⋊3D5
G = < a,b,c,d | a8=b2=c5=d2=1, bab=a3, ac=ca, ad=da, bc=cb, dbd=a4b, dcd=c-1 >
Subgroups: 216 in 62 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, Q8, Q8, D5, C10, C10, C2×C8, D8, SD16, SD16, Q16, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C4○D8, C5⋊2C8, C40, Dic10, C4×D5, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C5×D4, C5×Q8, C8×D5, C40⋊C2, D4⋊D5, C5⋊Q16, C5×SD16, D4⋊2D5, Q8⋊2D5, SD16⋊3D5
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C4○D8, C22×D5, D4×D5, SD16⋊3D5
Character table of SD16⋊3D5
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 4 | 10 | 20 | 2 | 4 | 5 | 5 | 20 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 8 | 8 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 2 | 0 | -2 | 0 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 2 | 2 | √-2 | -√-2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 2 | 2 | -√-2 | √-2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 2 | 2 | -√-2 | √-2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 2 | 2 | √-2 | -√-2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ23 | 4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ24 | 4 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√-2 | -2√-2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√-2 | 2√-2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√-2 | 2√-2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√-2 | -2√-2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 28)(10 31)(11 26)(12 29)(13 32)(14 27)(15 30)(16 25)(17 36)(18 39)(19 34)(20 37)(21 40)(22 35)(23 38)(24 33)(41 77)(42 80)(43 75)(44 78)(45 73)(46 76)(47 79)(48 74)(49 69)(50 72)(51 67)(52 70)(53 65)(54 68)(55 71)(56 66)
(1 71 79 33 12)(2 72 80 34 13)(3 65 73 35 14)(4 66 74 36 15)(5 67 75 37 16)(6 68 76 38 9)(7 69 77 39 10)(8 70 78 40 11)(17 30 60 56 48)(18 31 61 49 41)(19 32 62 50 42)(20 25 63 51 43)(21 26 64 52 44)(22 27 57 53 45)(23 28 58 54 46)(24 29 59 55 47)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(33 54)(34 55)(35 56)(36 49)(37 50)(38 51)(39 52)(40 53)(41 74)(42 75)(43 76)(44 77)(45 78)(46 79)(47 80)(48 73)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,36)(18,39)(19,34)(20,37)(21,40)(22,35)(23,38)(24,33)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,71,79,33,12)(2,72,80,34,13)(3,65,73,35,14)(4,66,74,36,15)(5,67,75,37,16)(6,68,76,38,9)(7,69,77,39,10)(8,70,78,40,11)(17,30,60,56,48)(18,31,61,49,41)(19,32,62,50,42)(20,25,63,51,43)(21,26,64,52,44)(22,27,57,53,45)(23,28,58,54,46)(24,29,59,55,47), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(33,54)(34,55)(35,56)(36,49)(37,50)(38,51)(39,52)(40,53)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,36)(18,39)(19,34)(20,37)(21,40)(22,35)(23,38)(24,33)(41,77)(42,80)(43,75)(44,78)(45,73)(46,76)(47,79)(48,74)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,71,79,33,12)(2,72,80,34,13)(3,65,73,35,14)(4,66,74,36,15)(5,67,75,37,16)(6,68,76,38,9)(7,69,77,39,10)(8,70,78,40,11)(17,30,60,56,48)(18,31,61,49,41)(19,32,62,50,42)(20,25,63,51,43)(21,26,64,52,44)(22,27,57,53,45)(23,28,58,54,46)(24,29,59,55,47), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(33,54)(34,55)(35,56)(36,49)(37,50)(38,51)(39,52)(40,53)(41,74)(42,75)(43,76)(44,77)(45,78)(46,79)(47,80)(48,73) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,28),(10,31),(11,26),(12,29),(13,32),(14,27),(15,30),(16,25),(17,36),(18,39),(19,34),(20,37),(21,40),(22,35),(23,38),(24,33),(41,77),(42,80),(43,75),(44,78),(45,73),(46,76),(47,79),(48,74),(49,69),(50,72),(51,67),(52,70),(53,65),(54,68),(55,71),(56,66)], [(1,71,79,33,12),(2,72,80,34,13),(3,65,73,35,14),(4,66,74,36,15),(5,67,75,37,16),(6,68,76,38,9),(7,69,77,39,10),(8,70,78,40,11),(17,30,60,56,48),(18,31,61,49,41),(19,32,62,50,42),(20,25,63,51,43),(21,26,64,52,44),(22,27,57,53,45),(23,28,58,54,46),(24,29,59,55,47)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(33,54),(34,55),(35,56),(36,49),(37,50),(38,51),(39,52),(40,53),(41,74),(42,75),(43,76),(44,77),(45,78),(46,79),(47,80),(48,73)]])
SD16⋊3D5 is a maximal subgroup of
SD16⋊3F5 SD16⋊2F5 D20.29D4 D5×C4○D8 D8⋊11D10 SD16⋊D10 D8⋊5D10 D40⋊C22 D20.44D4 C40.31D6 Dic6.D10 C60.16C23 D20.10D6 D20.14D6 D12.D10 D4.5D30 Dic5.6S4
SD16⋊3D5 is a maximal quotient of
Dic5⋊4D8 D4.Dic10 (C8×Dic5)⋊C2 D4⋊2D5⋊C4 D10⋊D8 C40⋊6C4⋊C2 D4⋊3D20 D20.D4 Dic5⋊4Q16 Dic10.11D4 Q8.2Dic10 Q8⋊Dic5⋊C2 Q8⋊2D5⋊C4 Q8.D20 D10⋊Q16 D10⋊1C8.C2 Dic5⋊8SD16 Dic10.Q8 C8.8Dic10 (C8×D5)⋊C4 C8⋊8D20 C4.Q8⋊D5 C20.(C4○D4) D20.Q8 SD16×Dic5 (C5×D4).D4 (C5×Q8).D4 C40.43D4 C40⋊14D4 D20⋊7D4 Dic10.16D4 C40.31D6 Dic6.D10 C60.16C23 D20.10D6 D20.14D6 D12.D10 D4.5D30
Matrix representation of SD16⋊3D5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 29 |
0 | 0 | 17 | 0 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 24 | 26 |
0 | 0 | 11 | 17 |
0 | 1 | 0 | 0 |
40 | 34 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 40 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 9 | 40 |
0 | 0 | 39 | 32 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,11,17,0,0,29,0],[40,0,0,0,0,40,0,0,0,0,24,11,0,0,26,17],[0,40,0,0,1,34,0,0,0,0,1,0,0,0,0,1],[0,40,0,0,40,0,0,0,0,0,9,39,0,0,40,32] >;
SD16⋊3D5 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\rtimes_3D_5
% in TeX
G:=Group("SD16:3D5");
// GroupNames label
G:=SmallGroup(160,137);
// by ID
G=gap.SmallGroup(160,137);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,362,116,86,297,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=d^2=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations
Export