direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×SD16, C8⋊5D10, Q8⋊1D10, C40⋊5C22, D4.2D10, D10.24D4, C20.4C23, Dic5.8D4, D20.2C22, Dic10⋊2C22, (C8×D5)⋊4C2, Q8⋊D5⋊1C2, (Q8×D5)⋊1C2, C5⋊2(C2×SD16), C40⋊C2⋊5C2, D4.D5⋊3C2, (D4×D5).1C2, C2.18(D4×D5), C5⋊2C8⋊6C22, (C5×SD16)⋊3C2, C10.30(C2×D4), (C5×Q8)⋊1C22, C4.4(C22×D5), (C5×D4).2C22, (C4×D5).17C22, SmallGroup(160,134)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×SD16
G = < a,b,c,d | a5=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >
Subgroups: 264 in 68 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C2×C8, SD16, SD16, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×SD16, C5⋊2C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, D5×SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, D10, C2×SD16, C22×D5, D4×D5, D5×SD16
Character table of D5×SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 4 | 5 | 5 | 20 | 2 | 4 | 10 | 20 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 8 | 8 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 2 | 2 | 0 | -2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -√-2 | √-2 | √-2 | -√-2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | √-2 | -√-2 | √-2 | -√-2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -√-2 | √-2 | -√-2 | √-2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | √-2 | -√-2 | -√-2 | √-2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ24 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√-2 | -2√-2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√-2 | 2√-2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√-2 | -2√-2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√-2 | 2√-2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ53+ζ87ζ52+ζ85ζ53+ζ85ζ52 | ζ87ζ54+ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ83ζ54+ζ83ζ5+ζ8ζ54+ζ8ζ5 | complex faithful |
(1 35 12 18 29)(2 36 13 19 30)(3 37 14 20 31)(4 38 15 21 32)(5 39 16 22 25)(6 40 9 23 26)(7 33 10 24 27)(8 34 11 17 28)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 13)(10 14)(11 15)(12 16)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)
G:=sub<Sym(40)| (1,35,12,18,29)(2,36,13,19,30)(3,37,14,20,31)(4,38,15,21,32)(5,39,16,22,25)(6,40,9,23,26)(7,33,10,24,27)(8,34,11,17,28), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,13)(10,14)(11,15)(12,16)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)>;
G:=Group( (1,35,12,18,29)(2,36,13,19,30)(3,37,14,20,31)(4,38,15,21,32)(5,39,16,22,25)(6,40,9,23,26)(7,33,10,24,27)(8,34,11,17,28), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,13)(10,14)(11,15)(12,16)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38) );
G=PermutationGroup([[(1,35,12,18,29),(2,36,13,19,30),(3,37,14,20,31),(4,38,15,21,32),(5,39,16,22,25),(6,40,9,23,26),(7,33,10,24,27),(8,34,11,17,28)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,13),(10,14),(11,15),(12,16),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38)]])
D5×SD16 is a maximal subgroup of
SD16⋊F5 D20.29D4 D8⋊11D10 D8⋊6D10 C40.C23 C40⋊14D6 Dic10⋊D6 D15⋊SD16
D5×SD16 is a maximal quotient of
Dic5⋊6SD16 Dic5.5D8 D4⋊Dic10 Dic10⋊2D4 D20.8D4 D10.16SD16 D10⋊SD16 Dic5⋊7SD16 Q8⋊Dic10 Dic5.3Q16 D10.11SD16 Q8⋊2D20 D10⋊2SD16 Dic5⋊SD16 Dic5⋊8SD16 Dic10⋊Q8 C40⋊5Q8 D10.12SD16 D10.17SD16 C8⋊8D20 D20⋊Q8 Dic5⋊3SD16 Dic5⋊5SD16 D10⋊6SD16 D10⋊8SD16 C40⋊14D4 C40⋊15D4 C40⋊14D6 Dic10⋊D6 D15⋊SD16
Matrix representation of D5×SD16 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 6 | 1 |
0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 |
0 | 0 | 0 | 40 |
26 | 26 | 0 | 0 |
15 | 26 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,6,40,0,0,1,0],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,6,40],[26,15,0,0,26,26,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1] >;
D5×SD16 in GAP, Magma, Sage, TeX
D_5\times {\rm SD}_{16}
% in TeX
G:=Group("D5xSD16");
// GroupNames label
G:=SmallGroup(160,134);
// by ID
G=gap.SmallGroup(160,134);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,116,86,297,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export