Copied to
clipboard

G = D20.2C4order 160 = 25·5

The non-split extension by D20 of C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.2C4, C8.12D10, M4(2)⋊5D5, C40.12C22, C20.39C23, Dic10.2C4, (C8×D5)⋊8C2, C54(C8○D4), C4.5(C4×D5), C8⋊D56C2, C5⋊D4.2C4, C20.34(C2×C4), C4○D20.3C2, D10.4(C2×C4), (C2×C4).46D10, C22.1(C4×D5), (C5×M4(2))⋊4C2, Dic5.6(C2×C4), C4.39(C22×D5), (C2×C20).26C22, C10.29(C22×C4), C52C8.12C22, (C4×D5).24C22, (C2×C52C8)⋊3C2, C2.17(C2×C4×D5), (C2×C10).26(C2×C4), SmallGroup(160,128)

Series: Derived Chief Lower central Upper central

C1C10 — D20.2C4
C1C5C10C20C4×D5C4○D20 — D20.2C4
C5C10 — D20.2C4
C1C4M4(2)

Generators and relations for D20.2C4
 G = < a,b,c | a20=b2=1, c4=a10, bab=a-1, cac-1=a11, cbc-1=a10b >

Subgroups: 160 in 62 conjugacy classes, 37 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C2×C8, M4(2), M4(2), C4○D4, Dic5, C20, D10, C2×C10, C8○D4, C52C8, C40, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C8×D5, C8⋊D5, C2×C52C8, C5×M4(2), C4○D20, D20.2C4
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, D10, C8○D4, C4×D5, C22×D5, C2×C4×D5, D20.2C4

Smallest permutation representation of D20.2C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 23)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(41 51)(42 50)(43 49)(44 48)(45 47)(52 60)(53 59)(54 58)(55 57)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)
(1 75 59 30 11 65 49 40)(2 66 60 21 12 76 50 31)(3 77 41 32 13 67 51 22)(4 68 42 23 14 78 52 33)(5 79 43 34 15 69 53 24)(6 70 44 25 16 80 54 35)(7 61 45 36 17 71 55 26)(8 72 46 27 18 62 56 37)(9 63 47 38 19 73 57 28)(10 74 48 29 20 64 58 39)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78), (1,75,59,30,11,65,49,40)(2,66,60,21,12,76,50,31)(3,77,41,32,13,67,51,22)(4,68,42,23,14,78,52,33)(5,79,43,34,15,69,53,24)(6,70,44,25,16,80,54,35)(7,61,45,36,17,71,55,26)(8,72,46,27,18,62,56,37)(9,63,47,38,19,73,57,28)(10,74,48,29,20,64,58,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78), (1,75,59,30,11,65,49,40)(2,66,60,21,12,76,50,31)(3,77,41,32,13,67,51,22)(4,68,42,23,14,78,52,33)(5,79,43,34,15,69,53,24)(6,70,44,25,16,80,54,35)(7,61,45,36,17,71,55,26)(8,72,46,27,18,62,56,37)(9,63,47,38,19,73,57,28)(10,74,48,29,20,64,58,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,23),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(41,51),(42,50),(43,49),(44,48),(45,47),(52,60),(53,59),(54,58),(55,57),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78)], [(1,75,59,30,11,65,49,40),(2,66,60,21,12,76,50,31),(3,77,41,32,13,67,51,22),(4,68,42,23,14,78,52,33),(5,79,43,34,15,69,53,24),(6,70,44,25,16,80,54,35),(7,61,45,36,17,71,55,26),(8,72,46,27,18,62,56,37),(9,63,47,38,19,73,57,28),(10,74,48,29,20,64,58,39)]])

D20.2C4 is a maximal subgroup of
D20.C8  D20.2D4  D20.3D4  D20.6D4  D20.7D4  M4(2).22D10  C42.196D10  D4016C4  D4013C4  Dic10.C8  C40.47C23  D5×C8○D4  C20.72C24  D85D10  D86D10  C40.C23  D20.44D4  C40.34D6  C40.35D6  D20.2Dic3  D60.5C4  D60.3C4
D20.2C4 is a maximal quotient of
C40⋊Q8  C89D20  D10.7C42  C42.185D10  C408C4⋊C2  C55(C8×D4)  C22⋊C8⋊D5  C52C826D4  Dic105C8  C42.198D10  D205C8  C206M4(2)  C42.30D10  C42.31D10  C20.51(C4⋊C4)  C20.37C42  C40⋊D4  C4018D4  C4.89(C2×D20)  C40.34D6  C40.35D6  D20.2Dic3  D60.5C4  D60.3C4

40 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D8E8F8G8H8I8J10A10B10C10D20A20B20C20D20E20F40A···40H
order12222444445588888888881010101020202020202040···40
size112101011210102222225555101022442222444···4

40 irreducible representations

dim1111111112222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4D5D10D10C8○D4C4×D5C4×D5D20.2C4
kernelD20.2C4C8×D5C8⋊D5C2×C52C8C5×M4(2)C4○D20Dic10D20C5⋊D4M4(2)C8C2×C4C5C4C22C1
# reps1221112242424444

Matrix representation of D20.2C4 in GL4(𝔽41) generated by

04000
13500
002734
003414
,
0100
1000
00400
0041
,
1000
0100
00121
001640
G:=sub<GL(4,GF(41))| [0,1,0,0,40,35,0,0,0,0,27,34,0,0,34,14],[0,1,0,0,1,0,0,0,0,0,40,4,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,1,16,0,0,21,40] >;

D20.2C4 in GAP, Magma, Sage, TeX

D_{20}._2C_4
% in TeX

G:=Group("D20.2C4");
// GroupNames label

G:=SmallGroup(160,128);
// by ID

G=gap.SmallGroup(160,128);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,188,50,69,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=1,c^4=a^10,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations

׿
×
𝔽