Extensions 1→N→G→Q→1 with N=C2×C4 and Q=F5

Direct product G=N×Q with N=C2×C4 and Q=F5
dρLabelID
C2×C4×F540C2xC4xF5160,203

Semidirect products G=N:Q with N=C2×C4 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊F5 = D10.D4φ: F5/C5C4 ⊆ Aut C2×C4404+(C2xC4):F5160,74
(C2×C4)⋊2F5 = D10.3Q8φ: F5/D5C2 ⊆ Aut C2×C440(C2xC4):2F5160,81
(C2×C4)⋊3F5 = C2×C4⋊F5φ: F5/D5C2 ⊆ Aut C2×C440(C2xC4):3F5160,204
(C2×C4)⋊4F5 = D10.C23φ: F5/D5C2 ⊆ Aut C2×C4404(C2xC4):4F5160,205

Non-split extensions G=N.Q with N=C2×C4 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2×C4).F5 = Dic5.D4φ: F5/C5C4 ⊆ Aut C2×C4804-(C2xC4).F5160,80
(C2×C4).2F5 = C10.C42φ: F5/D5C2 ⊆ Aut C2×C4160(C2xC4).2F5160,77
(C2×C4).3F5 = D10⋊C8φ: F5/D5C2 ⊆ Aut C2×C480(C2xC4).3F5160,78
(C2×C4).4F5 = Dic5⋊C8φ: F5/D5C2 ⊆ Aut C2×C4160(C2xC4).4F5160,79
(C2×C4).5F5 = C20.C8φ: F5/D5C2 ⊆ Aut C2×C4804(C2xC4).5F5160,73
(C2×C4).6F5 = C20⋊C8φ: F5/D5C2 ⊆ Aut C2×C4160(C2xC4).6F5160,76
(C2×C4).7F5 = C2×C4.F5φ: F5/D5C2 ⊆ Aut C2×C480(C2xC4).7F5160,201
(C2×C4).8F5 = D5⋊M4(2)φ: F5/D5C2 ⊆ Aut C2×C4404(C2xC4).8F5160,202
(C2×C4).9F5 = C2×C5⋊C16central extension (φ=1)160(C2xC4).9F5160,72
(C2×C4).10F5 = C4×C5⋊C8central extension (φ=1)160(C2xC4).10F5160,75
(C2×C4).11F5 = C2×D5⋊C8central extension (φ=1)80(C2xC4).11F5160,200

׿
×
𝔽