Copied to
clipboard

G = C2×C5⋊C16order 160 = 25·5

Direct product of C2 and C5⋊C16

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C5⋊C16, C10⋊C16, C20.3C8, C52(C2×C16), C4.3(C5⋊C8), (C2×C4).9F5, C52C8.5C4, (C2×C20).9C4, (C2×C10).1C8, C10.5(C2×C8), C4.18(C2×F5), C20.17(C2×C4), C22.2(C5⋊C8), C52C8.16C22, C2.1(C2×C5⋊C8), (C2×C52C8).12C2, SmallGroup(160,72)

Series: Derived Chief Lower central Upper central

C1C5 — C2×C5⋊C16
C1C5C10C20C52C8C5⋊C16 — C2×C5⋊C16
C5 — C2×C5⋊C16
C1C2×C4

Generators and relations for C2×C5⋊C16
 G = < a,b,c | a2=b5=c16=1, ab=ba, ac=ca, cbc-1=b3 >

5C8
5C8
5C16
5C2×C8
5C16
5C2×C16

Smallest permutation representation of C2×C5⋊C16
Regular action on 160 points
Generators in S160
(1 160)(2 145)(3 146)(4 147)(5 148)(6 149)(7 150)(8 151)(9 152)(10 153)(11 154)(12 155)(13 156)(14 157)(15 158)(16 159)(17 46)(18 47)(19 48)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(49 140)(50 141)(51 142)(52 143)(53 144)(54 129)(55 130)(56 131)(57 132)(58 133)(59 134)(60 135)(61 136)(62 137)(63 138)(64 139)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 97)(74 98)(75 99)(76 100)(77 101)(78 102)(79 103)(80 104)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 121)(96 122)
(1 83 62 21 99)(2 22 84 100 63)(3 101 23 64 85)(4 49 102 86 24)(5 87 50 25 103)(6 26 88 104 51)(7 105 27 52 89)(8 53 106 90 28)(9 91 54 29 107)(10 30 92 108 55)(11 109 31 56 93)(12 57 110 94 32)(13 95 58 17 111)(14 18 96 112 59)(15 97 19 60 81)(16 61 98 82 20)(33 159 136 74 124)(34 75 160 125 137)(35 126 76 138 145)(36 139 127 146 77)(37 147 140 78 128)(38 79 148 113 141)(39 114 80 142 149)(40 143 115 150 65)(41 151 144 66 116)(42 67 152 117 129)(43 118 68 130 153)(44 131 119 154 69)(45 155 132 70 120)(46 71 156 121 133)(47 122 72 134 157)(48 135 123 158 73)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,160)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(49,140)(50,141)(51,142)(52,143)(53,144)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122), (1,83,62,21,99)(2,22,84,100,63)(3,101,23,64,85)(4,49,102,86,24)(5,87,50,25,103)(6,26,88,104,51)(7,105,27,52,89)(8,53,106,90,28)(9,91,54,29,107)(10,30,92,108,55)(11,109,31,56,93)(12,57,110,94,32)(13,95,58,17,111)(14,18,96,112,59)(15,97,19,60,81)(16,61,98,82,20)(33,159,136,74,124)(34,75,160,125,137)(35,126,76,138,145)(36,139,127,146,77)(37,147,140,78,128)(38,79,148,113,141)(39,114,80,142,149)(40,143,115,150,65)(41,151,144,66,116)(42,67,152,117,129)(43,118,68,130,153)(44,131,119,154,69)(45,155,132,70,120)(46,71,156,121,133)(47,122,72,134,157)(48,135,123,158,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,160)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(49,140)(50,141)(51,142)(52,143)(53,144)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122), (1,83,62,21,99)(2,22,84,100,63)(3,101,23,64,85)(4,49,102,86,24)(5,87,50,25,103)(6,26,88,104,51)(7,105,27,52,89)(8,53,106,90,28)(9,91,54,29,107)(10,30,92,108,55)(11,109,31,56,93)(12,57,110,94,32)(13,95,58,17,111)(14,18,96,112,59)(15,97,19,60,81)(16,61,98,82,20)(33,159,136,74,124)(34,75,160,125,137)(35,126,76,138,145)(36,139,127,146,77)(37,147,140,78,128)(38,79,148,113,141)(39,114,80,142,149)(40,143,115,150,65)(41,151,144,66,116)(42,67,152,117,129)(43,118,68,130,153)(44,131,119,154,69)(45,155,132,70,120)(46,71,156,121,133)(47,122,72,134,157)(48,135,123,158,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,160),(2,145),(3,146),(4,147),(5,148),(6,149),(7,150),(8,151),(9,152),(10,153),(11,154),(12,155),(13,156),(14,157),(15,158),(16,159),(17,46),(18,47),(19,48),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(49,140),(50,141),(51,142),(52,143),(53,144),(54,129),(55,130),(56,131),(57,132),(58,133),(59,134),(60,135),(61,136),(62,137),(63,138),(64,139),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,97),(74,98),(75,99),(76,100),(77,101),(78,102),(79,103),(80,104),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,121),(96,122)], [(1,83,62,21,99),(2,22,84,100,63),(3,101,23,64,85),(4,49,102,86,24),(5,87,50,25,103),(6,26,88,104,51),(7,105,27,52,89),(8,53,106,90,28),(9,91,54,29,107),(10,30,92,108,55),(11,109,31,56,93),(12,57,110,94,32),(13,95,58,17,111),(14,18,96,112,59),(15,97,19,60,81),(16,61,98,82,20),(33,159,136,74,124),(34,75,160,125,137),(35,126,76,138,145),(36,139,127,146,77),(37,147,140,78,128),(38,79,148,113,141),(39,114,80,142,149),(40,143,115,150,65),(41,151,144,66,116),(42,67,152,117,129),(43,118,68,130,153),(44,131,119,154,69),(45,155,132,70,120),(46,71,156,121,133),(47,122,72,134,157),(48,135,123,158,73)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

C2×C5⋊C16 is a maximal subgroup of
C20⋊C16  C42.4F5  Dic5⋊C16  C40.C8  D10⋊C16  C10.M5(2)  D20.C8  C10.6M5(2)  D4.(C5⋊C8)  Dic10.C8  C5⋊C16.C22
C2×C5⋊C16 is a maximal quotient of
C20⋊C16  C5⋊M6(2)  C10.6M5(2)

40 conjugacy classes

class 1 2A2B2C4A4B4C4D 5 8A···8H10A10B10C16A···16P20A20B20C20D
order1222444458···810101016···1620202020
size1111111145···54445···54444

40 irreducible representations

dim1111111144444
type++++-+-
imageC1C2C2C4C4C8C8C16F5C5⋊C8C2×F5C5⋊C8C5⋊C16
kernelC2×C5⋊C16C5⋊C16C2×C52C8C52C8C2×C20C20C2×C10C10C2×C4C4C4C22C2
# reps12122441611114

Matrix representation of C2×C5⋊C16 in GL5(𝔽241)

2400000
0240000
0024000
0002400
0000240
,
10000
0000240
0100240
0010240
0001240
,
1300000
024429166
05317047190
07119451219
075223217237

G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,240,240,240,240],[130,0,0,0,0,0,24,53,71,75,0,4,170,194,223,0,29,47,51,217,0,166,190,219,237] >;

C2×C5⋊C16 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes C_{16}
% in TeX

G:=Group("C2xC5:C16");
// GroupNames label

G:=SmallGroup(160,72);
// by ID

G=gap.SmallGroup(160,72);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,50,69,2309,1169]);
// Polycyclic

G:=Group<a,b,c|a^2=b^5=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C2×C5⋊C16 in TeX

׿
×
𝔽