direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C5⋊C16, C10⋊C16, C20.3C8, C5⋊2(C2×C16), C4.3(C5⋊C8), (C2×C4).9F5, C5⋊2C8.5C4, (C2×C20).9C4, (C2×C10).1C8, C10.5(C2×C8), C4.18(C2×F5), C20.17(C2×C4), C22.2(C5⋊C8), C5⋊2C8.16C22, C2.1(C2×C5⋊C8), (C2×C5⋊2C8).12C2, SmallGroup(160,72)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C20 — C5⋊2C8 — C5⋊C16 — C2×C5⋊C16 |
C5 — C2×C5⋊C16 |
Generators and relations for C2×C5⋊C16
G = < a,b,c | a2=b5=c16=1, ab=ba, ac=ca, cbc-1=b3 >
(1 160)(2 145)(3 146)(4 147)(5 148)(6 149)(7 150)(8 151)(9 152)(10 153)(11 154)(12 155)(13 156)(14 157)(15 158)(16 159)(17 46)(18 47)(19 48)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(49 140)(50 141)(51 142)(52 143)(53 144)(54 129)(55 130)(56 131)(57 132)(58 133)(59 134)(60 135)(61 136)(62 137)(63 138)(64 139)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 97)(74 98)(75 99)(76 100)(77 101)(78 102)(79 103)(80 104)(81 123)(82 124)(83 125)(84 126)(85 127)(86 128)(87 113)(88 114)(89 115)(90 116)(91 117)(92 118)(93 119)(94 120)(95 121)(96 122)
(1 83 62 21 99)(2 22 84 100 63)(3 101 23 64 85)(4 49 102 86 24)(5 87 50 25 103)(6 26 88 104 51)(7 105 27 52 89)(8 53 106 90 28)(9 91 54 29 107)(10 30 92 108 55)(11 109 31 56 93)(12 57 110 94 32)(13 95 58 17 111)(14 18 96 112 59)(15 97 19 60 81)(16 61 98 82 20)(33 159 136 74 124)(34 75 160 125 137)(35 126 76 138 145)(36 139 127 146 77)(37 147 140 78 128)(38 79 148 113 141)(39 114 80 142 149)(40 143 115 150 65)(41 151 144 66 116)(42 67 152 117 129)(43 118 68 130 153)(44 131 119 154 69)(45 155 132 70 120)(46 71 156 121 133)(47 122 72 134 157)(48 135 123 158 73)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,160)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(49,140)(50,141)(51,142)(52,143)(53,144)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122), (1,83,62,21,99)(2,22,84,100,63)(3,101,23,64,85)(4,49,102,86,24)(5,87,50,25,103)(6,26,88,104,51)(7,105,27,52,89)(8,53,106,90,28)(9,91,54,29,107)(10,30,92,108,55)(11,109,31,56,93)(12,57,110,94,32)(13,95,58,17,111)(14,18,96,112,59)(15,97,19,60,81)(16,61,98,82,20)(33,159,136,74,124)(34,75,160,125,137)(35,126,76,138,145)(36,139,127,146,77)(37,147,140,78,128)(38,79,148,113,141)(39,114,80,142,149)(40,143,115,150,65)(41,151,144,66,116)(42,67,152,117,129)(43,118,68,130,153)(44,131,119,154,69)(45,155,132,70,120)(46,71,156,121,133)(47,122,72,134,157)(48,135,123,158,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;
G:=Group( (1,160)(2,145)(3,146)(4,147)(5,148)(6,149)(7,150)(8,151)(9,152)(10,153)(11,154)(12,155)(13,156)(14,157)(15,158)(16,159)(17,46)(18,47)(19,48)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(49,140)(50,141)(51,142)(52,143)(53,144)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(61,136)(62,137)(63,138)(64,139)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,123)(82,124)(83,125)(84,126)(85,127)(86,128)(87,113)(88,114)(89,115)(90,116)(91,117)(92,118)(93,119)(94,120)(95,121)(96,122), (1,83,62,21,99)(2,22,84,100,63)(3,101,23,64,85)(4,49,102,86,24)(5,87,50,25,103)(6,26,88,104,51)(7,105,27,52,89)(8,53,106,90,28)(9,91,54,29,107)(10,30,92,108,55)(11,109,31,56,93)(12,57,110,94,32)(13,95,58,17,111)(14,18,96,112,59)(15,97,19,60,81)(16,61,98,82,20)(33,159,136,74,124)(34,75,160,125,137)(35,126,76,138,145)(36,139,127,146,77)(37,147,140,78,128)(38,79,148,113,141)(39,114,80,142,149)(40,143,115,150,65)(41,151,144,66,116)(42,67,152,117,129)(43,118,68,130,153)(44,131,119,154,69)(45,155,132,70,120)(46,71,156,121,133)(47,122,72,134,157)(48,135,123,158,73), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,160),(2,145),(3,146),(4,147),(5,148),(6,149),(7,150),(8,151),(9,152),(10,153),(11,154),(12,155),(13,156),(14,157),(15,158),(16,159),(17,46),(18,47),(19,48),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(49,140),(50,141),(51,142),(52,143),(53,144),(54,129),(55,130),(56,131),(57,132),(58,133),(59,134),(60,135),(61,136),(62,137),(63,138),(64,139),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,97),(74,98),(75,99),(76,100),(77,101),(78,102),(79,103),(80,104),(81,123),(82,124),(83,125),(84,126),(85,127),(86,128),(87,113),(88,114),(89,115),(90,116),(91,117),(92,118),(93,119),(94,120),(95,121),(96,122)], [(1,83,62,21,99),(2,22,84,100,63),(3,101,23,64,85),(4,49,102,86,24),(5,87,50,25,103),(6,26,88,104,51),(7,105,27,52,89),(8,53,106,90,28),(9,91,54,29,107),(10,30,92,108,55),(11,109,31,56,93),(12,57,110,94,32),(13,95,58,17,111),(14,18,96,112,59),(15,97,19,60,81),(16,61,98,82,20),(33,159,136,74,124),(34,75,160,125,137),(35,126,76,138,145),(36,139,127,146,77),(37,147,140,78,128),(38,79,148,113,141),(39,114,80,142,149),(40,143,115,150,65),(41,151,144,66,116),(42,67,152,117,129),(43,118,68,130,153),(44,131,119,154,69),(45,155,132,70,120),(46,71,156,121,133),(47,122,72,134,157),(48,135,123,158,73)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])
C2×C5⋊C16 is a maximal subgroup of
C20⋊C16 C42.4F5 Dic5⋊C16 C40.C8 D10⋊C16 C10.M5(2) D20.C8 C10.6M5(2) D4.(C5⋊C8) Dic10.C8 C5⋊C16.C22
C2×C5⋊C16 is a maximal quotient of
C20⋊C16 C5⋊M6(2) C10.6M5(2)
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5 | 8A | ··· | 8H | 10A | 10B | 10C | 16A | ··· | 16P | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 16 | ··· | 16 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 5 | ··· | 5 | 4 | 4 | 4 | 5 | ··· | 5 | 4 | 4 | 4 | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | - | ||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | F5 | C5⋊C8 | C2×F5 | C5⋊C8 | C5⋊C16 |
kernel | C2×C5⋊C16 | C5⋊C16 | C2×C5⋊2C8 | C5⋊2C8 | C2×C20 | C20 | C2×C10 | C10 | C2×C4 | C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 16 | 1 | 1 | 1 | 1 | 4 |
Matrix representation of C2×C5⋊C16 ►in GL5(𝔽241)
240 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 |
0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 240 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 240 |
0 | 1 | 0 | 0 | 240 |
0 | 0 | 1 | 0 | 240 |
0 | 0 | 0 | 1 | 240 |
130 | 0 | 0 | 0 | 0 |
0 | 24 | 4 | 29 | 166 |
0 | 53 | 170 | 47 | 190 |
0 | 71 | 194 | 51 | 219 |
0 | 75 | 223 | 217 | 237 |
G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,240,240,240,240],[130,0,0,0,0,0,24,53,71,75,0,4,170,194,223,0,29,47,51,217,0,166,190,219,237] >;
C2×C5⋊C16 in GAP, Magma, Sage, TeX
C_2\times C_5\rtimes C_{16}
% in TeX
G:=Group("C2xC5:C16");
// GroupNames label
G:=SmallGroup(160,72);
// by ID
G=gap.SmallGroup(160,72);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,50,69,2309,1169]);
// Polycyclic
G:=Group<a,b,c|a^2=b^5=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations
Export