Copied to
clipboard

G = C20.C8order 160 = 25·5

1st non-split extension by C20 of C8 acting via C8/C2=C4

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C20.1C8, C52M5(2), C4.(C5⋊C8), C5⋊C162C2, C22.(C5⋊C8), (C2×C4).5F5, C52C8.6C4, (C2×C20).7C4, C10.6(C2×C8), (C2×C10).2C8, C4.19(C2×F5), C20.18(C2×C4), C52C8.17C22, C2.3(C2×C5⋊C8), (C2×C52C8).11C2, SmallGroup(160,73)

Series: Derived Chief Lower central Upper central

C1C10 — C20.C8
C1C5C10C20C52C8C5⋊C16 — C20.C8
C5C10 — C20.C8
C1C4C2×C4

Generators and relations for C20.C8
 G = < a,b | a20=1, b8=a10, bab-1=a3 >

2C2
2C10
5C8
5C8
5C16
5C2×C8
5C16
5M5(2)

Character table of C20.C8

 class 12A2B4A4B4C58A8B8C8D8E8F10A10B10C16A16B16C16D16E16F16G16H20A20B20C20D
 size 11211245555101044410101010101010104444
ρ11111111111111111111111111111    trivial
ρ21111111111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311-111-111111-1-1-11-1-11111-1-1-111-1-1    linear of order 2
ρ411-111-111111-1-1-11-11-1-1-1-111111-1-1    linear of order 2
ρ51111111-1-1-1-1-1-1111i-i-iii-i-ii1111    linear of order 4
ρ611-111-11-1-1-1-111-11-1iii-i-i-i-ii11-1-1    linear of order 4
ρ71111111-1-1-1-1-1-1111-iii-i-iii-i1111    linear of order 4
ρ811-111-11-1-1-1-111-11-1-i-i-iiiii-i11-1-1    linear of order 4
ρ911-1-1-111ii-i-i-ii-11-1ζ85ζ87ζ83ζ85ζ8ζ83ζ87ζ8-1-111    linear of order 8
ρ10111-1-1-11ii-i-ii-i111ζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ8-1-1-1-1    linear of order 8
ρ1111-1-1-111-i-iiii-i-11-1ζ87ζ85ζ8ζ87ζ83ζ8ζ85ζ83-1-111    linear of order 8
ρ12111-1-1-11-i-iii-ii111ζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ83-1-1-1-1    linear of order 8
ρ13111-1-1-11-i-iii-ii111ζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ87-1-1-1-1    linear of order 8
ρ1411-1-1-111ii-i-i-ii-11-1ζ8ζ83ζ87ζ8ζ85ζ87ζ83ζ85-1-111    linear of order 8
ρ15111-1-1-11ii-i-ii-i111ζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ85-1-1-1-1    linear of order 8
ρ1611-1-1-111-i-iiii-i-11-1ζ83ζ8ζ85ζ83ζ87ζ85ζ8ζ87-1-111    linear of order 8
ρ172-20-2i2i028387858000-20000000002i-2i00    complex lifted from M5(2)
ρ182-202i-2i028588387000-2000000000-2i2i00    complex lifted from M5(2)
ρ192-202i-2i028858783000-2000000000-2i2i00    complex lifted from M5(2)
ρ202-20-2i2i028783885000-20000000002i-2i00    complex lifted from M5(2)
ρ2144-444-4-10000001-1100000000-1-111    orthogonal lifted from C2×F5
ρ22444444-1000000-1-1-100000000-1-1-1-1    orthogonal lifted from F5
ρ2344-4-4-44-10000001-110000000011-1-1    symplectic lifted from C5⋊C8, Schur index 2
ρ24444-4-4-4-1000000-1-1-1000000001111    symplectic lifted from C5⋊C8, Schur index 2
ρ254-40-4i4i0-100000051-500000000-ii-5--5    complex faithful, Schur index 2
ρ264-404i-4i0-100000051-500000000i-i--5-5    complex faithful, Schur index 2
ρ274-40-4i4i0-1000000-51500000000-ii--5-5    complex faithful, Schur index 2
ρ284-404i-4i0-1000000-51500000000i-i-5--5    complex faithful, Schur index 2

Smallest permutation representation of C20.C8
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 74 21 48 6 69 26 43 11 64 31 58 16 79 36 53)(2 61 30 51 7 76 35 46 12 71 40 41 17 66 25 56)(3 68 39 54 8 63 24 49 13 78 29 44 18 73 34 59)(4 75 28 57 9 70 33 52 14 65 38 47 19 80 23 42)(5 62 37 60 10 77 22 55 15 72 27 50 20 67 32 45)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,74,21,48,6,69,26,43,11,64,31,58,16,79,36,53)(2,61,30,51,7,76,35,46,12,71,40,41,17,66,25,56)(3,68,39,54,8,63,24,49,13,78,29,44,18,73,34,59)(4,75,28,57,9,70,33,52,14,65,38,47,19,80,23,42)(5,62,37,60,10,77,22,55,15,72,27,50,20,67,32,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,74,21,48,6,69,26,43,11,64,31,58,16,79,36,53)(2,61,30,51,7,76,35,46,12,71,40,41,17,66,25,56)(3,68,39,54,8,63,24,49,13,78,29,44,18,73,34,59)(4,75,28,57,9,70,33,52,14,65,38,47,19,80,23,42)(5,62,37,60,10,77,22,55,15,72,27,50,20,67,32,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,74,21,48,6,69,26,43,11,64,31,58,16,79,36,53),(2,61,30,51,7,76,35,46,12,71,40,41,17,66,25,56),(3,68,39,54,8,63,24,49,13,78,29,44,18,73,34,59),(4,75,28,57,9,70,33,52,14,65,38,47,19,80,23,42),(5,62,37,60,10,77,22,55,15,72,27,50,20,67,32,45)]])

C20.C8 is a maximal subgroup of
C42.3F5  C42.9F5  C40.1C8  C20.23C42  C20.10M4(2)  D20.C8  C20.29M4(2)  D4.(C5⋊C8)  D5⋊M5(2)  Dic10.C8  C5⋊C16.C22  C15⋊M5(2)  C60.C8
C20.C8 is a maximal quotient of
C20⋊C16  C42.4F5  C10.6M5(2)  C15⋊M5(2)  C60.C8

Matrix representation of C20.C8 in GL6(𝔽241)

17700000
78640000
000001
00240001
00024001
00002401
,
1722390000
76690000
0019717710201
00207137148157
001049384167
00401034464

G:=sub<GL(6,GF(241))| [177,78,0,0,0,0,0,64,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,1,1,1,1],[172,76,0,0,0,0,239,69,0,0,0,0,0,0,197,207,104,40,0,0,177,137,93,103,0,0,10,148,84,44,0,0,201,157,167,64] >;

C20.C8 in GAP, Magma, Sage, TeX

C_{20}.C_8
% in TeX

G:=Group("C20.C8");
// GroupNames label

G:=SmallGroup(160,73);
// by ID

G=gap.SmallGroup(160,73);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,50,69,2309,1169]);
// Polycyclic

G:=Group<a,b|a^20=1,b^8=a^10,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C20.C8 in TeX
Character table of C20.C8 in TeX

׿
×
𝔽