Extensions 1→N→G→Q→1 with N=C2×Dic5 and Q=C4

Direct product G=N×Q with N=C2×Dic5 and Q=C4
dρLabelID
C2×C4×Dic5160C2xC4xDic5160,143

Semidirect products G=N:Q with N=C2×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic5)⋊1C4 = C23.1D10φ: C4/C1C4 ⊆ Out C2×Dic5404(C2xDic5):1C4160,13
(C2×Dic5)⋊2C4 = C23⋊F5φ: C4/C1C4 ⊆ Out C2×Dic5404(C2xDic5):2C4160,86
(C2×Dic5)⋊3C4 = C10.10C42φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5):3C4160,38
(C2×Dic5)⋊4C4 = C23.11D10φ: C4/C2C2 ⊆ Out C2×Dic580(C2xDic5):4C4160,98
(C2×Dic5)⋊5C4 = C2×C10.D4φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5):5C4160,144
(C2×Dic5)⋊6C4 = D10.3Q8φ: C4/C2C2 ⊆ Out C2×Dic540(C2xDic5):6C4160,81
(C2×Dic5)⋊7C4 = C2×C4×F5φ: C4/C2C2 ⊆ Out C2×Dic540(C2xDic5):7C4160,203
(C2×Dic5)⋊8C4 = C2×C4⋊F5φ: C4/C2C2 ⊆ Out C2×Dic540(C2xDic5):8C4160,204
(C2×Dic5)⋊9C4 = D10.C23φ: C4/C2C2 ⊆ Out C2×Dic5404(C2xDic5):9C4160,205

Non-split extensions G=N.Q with N=C2×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic5).1C4 = C4.12D20φ: C4/C1C4 ⊆ Out C2×Dic5804-(C2xDic5).1C4160,31
(C2×Dic5).2C4 = Dic5.D4φ: C4/C1C4 ⊆ Out C2×Dic5804-(C2xDic5).2C4160,80
(C2×Dic5).3C4 = C20.8Q8φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).3C4160,21
(C2×Dic5).4C4 = C408C4φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).4C4160,22
(C2×Dic5).5C4 = D101C8φ: C4/C2C2 ⊆ Out C2×Dic580(C2xDic5).5C4160,27
(C2×Dic5).6C4 = C2×C8⋊D5φ: C4/C2C2 ⊆ Out C2×Dic580(C2xDic5).6C4160,121
(C2×Dic5).7C4 = D5×M4(2)φ: C4/C2C2 ⊆ Out C2×Dic5404(C2xDic5).7C4160,127
(C2×Dic5).8C4 = C4×C5⋊C8φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).8C4160,75
(C2×Dic5).9C4 = C20⋊C8φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).9C4160,76
(C2×Dic5).10C4 = C10.C42φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).10C4160,77
(C2×Dic5).11C4 = Dic5⋊C8φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).11C4160,79
(C2×Dic5).12C4 = C23.2F5φ: C4/C2C2 ⊆ Out C2×Dic580(C2xDic5).12C4160,87
(C2×Dic5).13C4 = C22×C5⋊C8φ: C4/C2C2 ⊆ Out C2×Dic5160(C2xDic5).13C4160,210
(C2×Dic5).14C4 = C2×C22.F5φ: C4/C2C2 ⊆ Out C2×Dic580(C2xDic5).14C4160,211
(C2×Dic5).15C4 = C8×Dic5φ: trivial image160(C2xDic5).15C4160,20
(C2×Dic5).16C4 = D5×C2×C8φ: trivial image80(C2xDic5).16C4160,120

׿
×
𝔽