Copied to
clipboard

G = C408C4order 160 = 25·5

4th semidirect product of C40 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C408C4, C83Dic5, C10.9C42, C10.7M4(2), C52C84C4, (C2×C8).8D5, C54(C8⋊C4), C4.21(C4×D5), C20.62(C2×C4), (C2×C40).12C2, (C2×C4).92D10, C2.4(C4×Dic5), C2.2(C8⋊D5), (C4×Dic5).6C2, (C2×Dic5).4C4, C4.13(C2×Dic5), C22.10(C4×D5), (C2×C20).106C22, (C2×C52C8).10C2, (C2×C10).31(C2×C4), SmallGroup(160,22)

Series: Derived Chief Lower central Upper central

C1C10 — C408C4
C1C5C10C2×C10C2×C20C4×Dic5 — C408C4
C5C10 — C408C4
C1C2×C4C2×C8

Generators and relations for C408C4
 G = < a,b | a40=b4=1, bab-1=a29 >

10C4
10C4
5C8
5C2×C4
5C2×C4
5C8
2Dic5
2Dic5
5C42
5C2×C8
5C8⋊C4

Smallest permutation representation of C408C4
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 74 123 113)(2 63 124 102)(3 52 125 91)(4 41 126 120)(5 70 127 109)(6 59 128 98)(7 48 129 87)(8 77 130 116)(9 66 131 105)(10 55 132 94)(11 44 133 83)(12 73 134 112)(13 62 135 101)(14 51 136 90)(15 80 137 119)(16 69 138 108)(17 58 139 97)(18 47 140 86)(19 76 141 115)(20 65 142 104)(21 54 143 93)(22 43 144 82)(23 72 145 111)(24 61 146 100)(25 50 147 89)(26 79 148 118)(27 68 149 107)(28 57 150 96)(29 46 151 85)(30 75 152 114)(31 64 153 103)(32 53 154 92)(33 42 155 81)(34 71 156 110)(35 60 157 99)(36 49 158 88)(37 78 159 117)(38 67 160 106)(39 56 121 95)(40 45 122 84)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,74,123,113)(2,63,124,102)(3,52,125,91)(4,41,126,120)(5,70,127,109)(6,59,128,98)(7,48,129,87)(8,77,130,116)(9,66,131,105)(10,55,132,94)(11,44,133,83)(12,73,134,112)(13,62,135,101)(14,51,136,90)(15,80,137,119)(16,69,138,108)(17,58,139,97)(18,47,140,86)(19,76,141,115)(20,65,142,104)(21,54,143,93)(22,43,144,82)(23,72,145,111)(24,61,146,100)(25,50,147,89)(26,79,148,118)(27,68,149,107)(28,57,150,96)(29,46,151,85)(30,75,152,114)(31,64,153,103)(32,53,154,92)(33,42,155,81)(34,71,156,110)(35,60,157,99)(36,49,158,88)(37,78,159,117)(38,67,160,106)(39,56,121,95)(40,45,122,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,74,123,113)(2,63,124,102)(3,52,125,91)(4,41,126,120)(5,70,127,109)(6,59,128,98)(7,48,129,87)(8,77,130,116)(9,66,131,105)(10,55,132,94)(11,44,133,83)(12,73,134,112)(13,62,135,101)(14,51,136,90)(15,80,137,119)(16,69,138,108)(17,58,139,97)(18,47,140,86)(19,76,141,115)(20,65,142,104)(21,54,143,93)(22,43,144,82)(23,72,145,111)(24,61,146,100)(25,50,147,89)(26,79,148,118)(27,68,149,107)(28,57,150,96)(29,46,151,85)(30,75,152,114)(31,64,153,103)(32,53,154,92)(33,42,155,81)(34,71,156,110)(35,60,157,99)(36,49,158,88)(37,78,159,117)(38,67,160,106)(39,56,121,95)(40,45,122,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,74,123,113),(2,63,124,102),(3,52,125,91),(4,41,126,120),(5,70,127,109),(6,59,128,98),(7,48,129,87),(8,77,130,116),(9,66,131,105),(10,55,132,94),(11,44,133,83),(12,73,134,112),(13,62,135,101),(14,51,136,90),(15,80,137,119),(16,69,138,108),(17,58,139,97),(18,47,140,86),(19,76,141,115),(20,65,142,104),(21,54,143,93),(22,43,144,82),(23,72,145,111),(24,61,146,100),(25,50,147,89),(26,79,148,118),(27,68,149,107),(28,57,150,96),(29,46,151,85),(30,75,152,114),(31,64,153,103),(32,53,154,92),(33,42,155,81),(34,71,156,110),(35,60,157,99),(36,49,158,88),(37,78,159,117),(38,67,160,106),(39,56,121,95),(40,45,122,84)]])

C408C4 is a maximal subgroup of
C80⋊C4  C20.23C42  C4011Q8  C4×C8⋊D5  D10.5C42  C40⋊Q8  D5×C8⋊C4  D10.7C42  Dic5.9M4(2)  C408C4⋊C2  D104M4(2)  C52C826D4  D4.D55C4  C4⋊C4.D10  C20⋊Q8⋊C2  D4⋊D56C4  C5⋊Q165C4  Q8⋊C4⋊D5  C408C4.C2  Q8⋊D56C4  Dic5.5M4(2)  C42.198D10  C42.202D10  C42.31D10  Dic2015C4  C403Q8  D4015C4  C404Q8  C4021(C2×C4)  D4016C4  C20.42C42  C4032D4  M4(2)×Dic5  C20.37C42  C40⋊D4  C40.50D4  D8⋊Dic5  C4011D4  SD16⋊Dic5  C40.31D4  C409D4  Q16⋊Dic5  C40.37D4  D84Dic5  C30.21C42  C30.23C42  C12013C4
C408C4 is a maximal quotient of
C42.279D10  C408C8  C80⋊C4  (C2×C40)⋊15C4  C30.21C42  C30.23C42  C12013C4

52 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E8F8G8H10A···10F20A···20H40A···40P
order122244444444558888888810···1020···2040···40
size1111111110101010222222101010102···22···22···2

52 irreducible representations

dim11111112222222
type+++++-+
imageC1C2C2C2C4C4C4D5M4(2)Dic5D10C4×D5C4×D5C8⋊D5
kernelC408C4C2×C52C8C4×Dic5C2×C40C52C8C40C2×Dic5C2×C8C10C8C2×C4C4C22C2
# reps111144424424416

Matrix representation of C408C4 in GL4(𝔽41) generated by

63500
6100
001322
001922
,
61800
233500
00215
002739
G:=sub<GL(4,GF(41))| [6,6,0,0,35,1,0,0,0,0,13,19,0,0,22,22],[6,23,0,0,18,35,0,0,0,0,2,27,0,0,15,39] >;

C408C4 in GAP, Magma, Sage, TeX

C_{40}\rtimes_8C_4
% in TeX

G:=Group("C40:8C4");
// GroupNames label

G:=SmallGroup(160,22);
// by ID

G=gap.SmallGroup(160,22);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,69,4613]);
// Polycyclic

G:=Group<a,b|a^40=b^4=1,b*a*b^-1=a^29>;
// generators/relations

Export

Subgroup lattice of C408C4 in TeX

׿
×
𝔽