Copied to
clipboard

G = C8×Dic5order 160 = 25·5

Direct product of C8 and Dic5

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C8×Dic5, C407C4, C10.8C42, C54(C4×C8), C52C89C4, C2.2(C8×D5), (C2×C8).10D5, C4.20(C4×D5), C10.12(C2×C8), (C2×C40).11C2, C20.61(C2×C4), (C2×C4).90D10, C2.2(C4×Dic5), C22.8(C4×D5), C4.12(C2×Dic5), (C4×Dic5).14C2, (C2×Dic5).15C4, (C2×C20).104C22, (C2×C52C8).14C2, (C2×C10).29(C2×C4), SmallGroup(160,20)

Series: Derived Chief Lower central Upper central

C1C5 — C8×Dic5
C1C5C10C2×C10C2×C20C4×Dic5 — C8×Dic5
C5 — C8×Dic5
C1C2×C8

Generators and relations for C8×Dic5
 G = < a,b,c | a8=b10=1, c2=b5, ab=ba, ac=ca, cbc-1=b-1 >

5C4
5C4
5C4
5C4
5C8
5C2×C4
5C2×C4
5C8
5C42
5C2×C8
5C4×C8

Smallest permutation representation of C8×Dic5
Regular action on 160 points
Generators in S160
(1 90 48 74 39 63 14 55)(2 81 49 75 40 64 15 56)(3 82 50 76 31 65 16 57)(4 83 41 77 32 66 17 58)(5 84 42 78 33 67 18 59)(6 85 43 79 34 68 19 60)(7 86 44 80 35 69 20 51)(8 87 45 71 36 70 11 52)(9 88 46 72 37 61 12 53)(10 89 47 73 38 62 13 54)(21 127 156 111 131 96 144 109)(22 128 157 112 132 97 145 110)(23 129 158 113 133 98 146 101)(24 130 159 114 134 99 147 102)(25 121 160 115 135 100 148 103)(26 122 151 116 136 91 149 104)(27 123 152 117 137 92 150 105)(28 124 153 118 138 93 141 106)(29 125 154 119 139 94 142 107)(30 126 155 120 140 95 143 108)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104 6 109)(2 103 7 108)(3 102 8 107)(4 101 9 106)(5 110 10 105)(11 94 16 99)(12 93 17 98)(13 92 18 97)(14 91 19 96)(15 100 20 95)(21 90 26 85)(22 89 27 84)(23 88 28 83)(24 87 29 82)(25 86 30 81)(31 114 36 119)(32 113 37 118)(33 112 38 117)(34 111 39 116)(35 120 40 115)(41 129 46 124)(42 128 47 123)(43 127 48 122)(44 126 49 121)(45 125 50 130)(51 143 56 148)(52 142 57 147)(53 141 58 146)(54 150 59 145)(55 149 60 144)(61 138 66 133)(62 137 67 132)(63 136 68 131)(64 135 69 140)(65 134 70 139)(71 154 76 159)(72 153 77 158)(73 152 78 157)(74 151 79 156)(75 160 80 155)

G:=sub<Sym(160)| (1,90,48,74,39,63,14,55)(2,81,49,75,40,64,15,56)(3,82,50,76,31,65,16,57)(4,83,41,77,32,66,17,58)(5,84,42,78,33,67,18,59)(6,85,43,79,34,68,19,60)(7,86,44,80,35,69,20,51)(8,87,45,71,36,70,11,52)(9,88,46,72,37,61,12,53)(10,89,47,73,38,62,13,54)(21,127,156,111,131,96,144,109)(22,128,157,112,132,97,145,110)(23,129,158,113,133,98,146,101)(24,130,159,114,134,99,147,102)(25,121,160,115,135,100,148,103)(26,122,151,116,136,91,149,104)(27,123,152,117,137,92,150,105)(28,124,153,118,138,93,141,106)(29,125,154,119,139,94,142,107)(30,126,155,120,140,95,143,108), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,6,109)(2,103,7,108)(3,102,8,107)(4,101,9,106)(5,110,10,105)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,90,26,85)(22,89,27,84)(23,88,28,83)(24,87,29,82)(25,86,30,81)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,143,56,148)(52,142,57,147)(53,141,58,146)(54,150,59,145)(55,149,60,144)(61,138,66,133)(62,137,67,132)(63,136,68,131)(64,135,69,140)(65,134,70,139)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155)>;

G:=Group( (1,90,48,74,39,63,14,55)(2,81,49,75,40,64,15,56)(3,82,50,76,31,65,16,57)(4,83,41,77,32,66,17,58)(5,84,42,78,33,67,18,59)(6,85,43,79,34,68,19,60)(7,86,44,80,35,69,20,51)(8,87,45,71,36,70,11,52)(9,88,46,72,37,61,12,53)(10,89,47,73,38,62,13,54)(21,127,156,111,131,96,144,109)(22,128,157,112,132,97,145,110)(23,129,158,113,133,98,146,101)(24,130,159,114,134,99,147,102)(25,121,160,115,135,100,148,103)(26,122,151,116,136,91,149,104)(27,123,152,117,137,92,150,105)(28,124,153,118,138,93,141,106)(29,125,154,119,139,94,142,107)(30,126,155,120,140,95,143,108), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,6,109)(2,103,7,108)(3,102,8,107)(4,101,9,106)(5,110,10,105)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,90,26,85)(22,89,27,84)(23,88,28,83)(24,87,29,82)(25,86,30,81)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,129,46,124)(42,128,47,123)(43,127,48,122)(44,126,49,121)(45,125,50,130)(51,143,56,148)(52,142,57,147)(53,141,58,146)(54,150,59,145)(55,149,60,144)(61,138,66,133)(62,137,67,132)(63,136,68,131)(64,135,69,140)(65,134,70,139)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155) );

G=PermutationGroup([[(1,90,48,74,39,63,14,55),(2,81,49,75,40,64,15,56),(3,82,50,76,31,65,16,57),(4,83,41,77,32,66,17,58),(5,84,42,78,33,67,18,59),(6,85,43,79,34,68,19,60),(7,86,44,80,35,69,20,51),(8,87,45,71,36,70,11,52),(9,88,46,72,37,61,12,53),(10,89,47,73,38,62,13,54),(21,127,156,111,131,96,144,109),(22,128,157,112,132,97,145,110),(23,129,158,113,133,98,146,101),(24,130,159,114,134,99,147,102),(25,121,160,115,135,100,148,103),(26,122,151,116,136,91,149,104),(27,123,152,117,137,92,150,105),(28,124,153,118,138,93,141,106),(29,125,154,119,139,94,142,107),(30,126,155,120,140,95,143,108)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104,6,109),(2,103,7,108),(3,102,8,107),(4,101,9,106),(5,110,10,105),(11,94,16,99),(12,93,17,98),(13,92,18,97),(14,91,19,96),(15,100,20,95),(21,90,26,85),(22,89,27,84),(23,88,28,83),(24,87,29,82),(25,86,30,81),(31,114,36,119),(32,113,37,118),(33,112,38,117),(34,111,39,116),(35,120,40,115),(41,129,46,124),(42,128,47,123),(43,127,48,122),(44,126,49,121),(45,125,50,130),(51,143,56,148),(52,142,57,147),(53,141,58,146),(54,150,59,145),(55,149,60,144),(61,138,66,133),(62,137,67,132),(63,136,68,131),(64,135,69,140),(65,134,70,139),(71,154,76,159),(72,153,77,158),(73,152,78,157),(74,151,79,156),(75,160,80,155)]])

C8×Dic5 is a maximal subgroup of
C40.88D4  C8017C4  C40.9Q8  C40⋊C8  C20.31M4(2)  C402C8  C401C8  C20.26M4(2)  Dic5.13D8  Dic5⋊C16  C40.C8  C10.M5(2)  C40.1C8  D5×C4×C8  D10.5C42  C40⋊Q8  D10.6C42  D10.7C42  Dic5.14M4(2)  C408C4⋊C2  C55(C8×D4)  Dic52M4(2)  Dic54D8  Dic56SD16  Dic5.5D8  (C8×Dic5)⋊C2  Dic57SD16  Dic54Q16  Dic5.3Q16  Q8⋊Dic5⋊C2  Dic5.5M4(2)  Dic105C8  C42.200D10  C42.31D10  Dic58SD16  C405Q8  C8.8Dic10  D4012C4  Dic55Q16  C402Q8  C8.6Dic10  D4013C4  C20.42C42  C20.37C42  C4018D4  C40.93D4  C405D4  C40.22D4  C40.43D4  C4015D4  C40.26D4  C40.28D4  D85Dic5  Dic154C8
C8×Dic5 is a maximal quotient of
C42.279D10  C8017C4  (C2×C40)⋊15C4  Dic154C8

64 conjugacy classes

class 1 2A2B2C4A4B4C4D4E···4L5A5B8A···8H8I···8P10A···10F20A···20H40A···40P
order122244444···4558···88···810···1020···2040···40
size111111115···5221···15···52···22···22···2

64 irreducible representations

dim11111111222222
type+++++-+
imageC1C2C2C2C4C4C4C8D5Dic5D10C4×D5C4×D5C8×D5
kernelC8×Dic5C2×C52C8C4×Dic5C2×C40C52C8C40C2×Dic5Dic5C2×C8C8C2×C4C4C22C2
# reps1111444162424416

Matrix representation of C8×Dic5 in GL3(𝔽41) generated by

100
0140
0014
,
4000
0040
0135
,
3200
0215
02739
G:=sub<GL(3,GF(41))| [1,0,0,0,14,0,0,0,14],[40,0,0,0,0,1,0,40,35],[32,0,0,0,2,27,0,15,39] >;

C8×Dic5 in GAP, Magma, Sage, TeX

C_8\times {\rm Dic}_5
% in TeX

G:=Group("C8xDic5");
// GroupNames label

G:=SmallGroup(160,20);
// by ID

G=gap.SmallGroup(160,20);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,55,69,4613]);
// Polycyclic

G:=Group<a,b,c|a^8=b^10=1,c^2=b^5,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C8×Dic5 in TeX

׿
×
𝔽