Copied to
clipboard

?

G = A4×C2×C8order 192 = 26·3

Direct product of C2×C8 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C2×C8, C232C24, C24.4C12, (C23×C8)⋊C3, C22⋊(C2×C24), C4.7(C4×A4), (C4×A4).6C4, (C22×C8)⋊4C6, (C23×C4).5C6, (C22×A4).4C4, C22.10(C4×A4), (C22×C4).9C12, C4.12(C22×A4), (C4×A4).22C22, C23.17(C2×C12), C2.2(C2×C4×A4), (C2×C4×A4).11C2, (C2×C4).19(C2×A4), (C2×A4).13(C2×C4), (C22×C4).85(C2×C6), SmallGroup(192,1010)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C2×C8
C1C22C23C22×C4C4×A4C2×C4×A4 — A4×C2×C8
C22 — A4×C2×C8

Subgroups: 224 in 93 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C4 [×2], C22 [×2], C22 [×11], C6 [×3], C8 [×2], C8 [×2], C2×C4, C2×C4 [×9], C23, C23 [×2], C23 [×4], C12 [×2], A4, C2×C6, C2×C8, C2×C8 [×9], C22×C4 [×2], C22×C4 [×4], C24, C24 [×2], C2×C12, C2×A4, C2×A4 [×2], C22×C8 [×2], C22×C8 [×4], C23×C4, C2×C24, C4×A4 [×2], C22×A4, C23×C8, C8×A4 [×2], C2×C4×A4, A4×C2×C8

Quotients:
C1, C2 [×3], C3, C4 [×2], C22, C6 [×3], C8 [×2], C2×C4, C12 [×2], A4, C2×C6, C2×C8, C24 [×2], C2×C12, C2×A4 [×3], C2×C24, C4×A4 [×2], C22×A4, C8×A4 [×2], C2×C4×A4, A4×C2×C8

Generators and relations
 G = < a,b,c,d,e | a2=b8=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Smallest permutation representation
On 48 points
Generators in S48
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 5)(2 6)(3 7)(4 8)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)(17 21)(18 22)(19 23)(20 24)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 15 39)(2 16 40)(3 9 33)(4 10 34)(5 11 35)(6 12 36)(7 13 37)(8 14 38)(17 32 41)(18 25 42)(19 26 43)(20 27 44)(21 28 45)(22 29 46)(23 30 47)(24 31 48)

G:=sub<Sym(48)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,6)(3,7)(4,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,15,39)(2,16,40)(3,9,33)(4,10,34)(5,11,35)(6,12,36)(7,13,37)(8,14,38)(17,32,41)(18,25,42)(19,26,43)(20,27,44)(21,28,45)(22,29,46)(23,30,47)(24,31,48)>;

G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,6)(3,7)(4,8)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,15,39)(2,16,40)(3,9,33)(4,10,34)(5,11,35)(6,12,36)(7,13,37)(8,14,38)(17,32,41)(18,25,42)(19,26,43)(20,27,44)(21,28,45)(22,29,46)(23,30,47)(24,31,48) );

G=PermutationGroup([(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,5),(2,6),(3,7),(4,8),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27),(17,21),(18,22),(19,23),(20,24),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,15,39),(2,16,40),(3,9,33),(4,10,34),(5,11,35),(6,12,36),(7,13,37),(8,14,38),(17,32,41),(18,25,42),(19,26,43),(20,27,44),(21,28,45),(22,29,46),(23,30,47),(24,31,48)])

Matrix representation G ⊆ GL4(𝔽73) generated by

1000
07200
00720
00072
,
10000
01000
00100
00010
,
1000
07200
00720
0001
,
1000
07200
0010
00072
,
1000
0010
0001
0100
G:=sub<GL(4,GF(73))| [1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[10,0,0,0,0,10,0,0,0,0,10,0,0,0,0,10],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,0,1],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H6A···6F8A···8H8I···8P12A···12H24A···24P
order1222222233444444446···68···88···812···1224···24
size1111333344111133334···41···13···34···44···4

64 irreducible representations

dim111111111111333333
type++++++
imageC1C2C2C3C4C4C6C6C8C12C12C24A4C2×A4C2×A4C4×A4C4×A4C8×A4
kernelA4×C2×C8C8×A4C2×C4×A4C23×C8C4×A4C22×A4C22×C8C23×C4C2×A4C22×C4C24C23C2×C8C8C2×C4C4C22C2
# reps1212224284416121228

In GAP, Magma, Sage, TeX

A_4\times C_2\times C_8
% in TeX

G:=Group("A4xC2xC8");
// GroupNames label

G:=SmallGroup(192,1010);
// by ID

G=gap.SmallGroup(192,1010);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,92,80,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^8=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽