Copied to
clipboard

?

G = C2×Q8×A4order 192 = 26·3

Direct product of C2, Q8 and A4

direct product, metabelian, soluble, monomial

Aliases: C2×Q8×A4, C22⋊(C6×Q8), C233(C3×Q8), (Q8×C23)⋊2C3, (C23×C4).3C6, C4.7(C22×A4), C2.4(C23×A4), (C22×Q8)⋊6C6, C24.27(C2×C6), (C4×A4).20C22, (C2×A4).13C23, C23.30(C22×C6), C22.19(C22×A4), (C22×A4).17C22, (C2×C4×A4).9C2, (C2×C4).11(C2×A4), (C22×C4).4(C2×C6), SmallGroup(192,1499)

Series: Derived Chief Lower central Upper central

C1C23 — C2×Q8×A4
C1C22C23C2×A4C22×A4C2×C4×A4 — C2×Q8×A4
C22C23 — C2×Q8×A4

Subgroups: 520 in 205 conjugacy classes, 57 normal (12 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×6], C4 [×6], C22 [×2], C22 [×11], C6 [×3], C2×C4 [×3], C2×C4 [×27], Q8 [×4], Q8 [×20], C23, C23 [×2], C23 [×4], C12 [×6], A4, C2×C6, C22×C4 [×6], C22×C4 [×12], C2×Q8, C2×Q8 [×37], C24, C2×C12 [×3], C3×Q8 [×4], C2×A4, C2×A4 [×2], C23×C4 [×3], C22×Q8 [×4], C22×Q8 [×8], C4×A4 [×6], C6×Q8, C22×A4, Q8×C23, C2×C4×A4 [×3], Q8×A4 [×4], C2×Q8×A4

Quotients:
C1, C2 [×7], C3, C22 [×7], C6 [×7], Q8 [×2], C23, A4, C2×C6 [×7], C2×Q8, C3×Q8 [×2], C2×A4 [×7], C22×C6, C6×Q8, C22×A4 [×7], Q8×A4 [×2], C23×A4, C2×Q8×A4

Generators and relations
 G = < a,b,c,d,e,f | a2=b4=d2=e2=f3=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Smallest permutation representation
On 48 points
Generators in S48
(1 11)(2 12)(3 9)(4 10)(5 27)(6 28)(7 25)(8 26)(13 31)(14 32)(15 29)(16 30)(17 21)(18 22)(19 23)(20 24)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 41 3 43)(2 44 4 42)(5 30 7 32)(6 29 8 31)(9 35 11 33)(10 34 12 36)(13 28 15 26)(14 27 16 25)(17 37 19 39)(18 40 20 38)(21 45 23 47)(22 48 24 46)
(5 27)(6 28)(7 25)(8 26)(13 31)(14 32)(15 29)(16 30)(17 21)(18 22)(19 23)(20 24)(37 45)(38 46)(39 47)(40 48)
(1 11)(2 12)(3 9)(4 10)(17 21)(18 22)(19 23)(20 24)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 7 19)(2 8 20)(3 5 17)(4 6 18)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 46 36)(14 47 33)(15 48 34)(16 45 35)(29 40 42)(30 37 43)(31 38 44)(32 39 41)

G:=sub<Sym(48)| (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,41,3,43)(2,44,4,42)(5,30,7,32)(6,29,8,31)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,37,19,39)(18,40,20,38)(21,45,23,47)(22,48,24,46), (5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,9)(4,10)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,42)(30,37,43)(31,38,44)(32,39,41)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,41,3,43)(2,44,4,42)(5,30,7,32)(6,29,8,31)(9,35,11,33)(10,34,12,36)(13,28,15,26)(14,27,16,25)(17,37,19,39)(18,40,20,38)(21,45,23,47)(22,48,24,46), (5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,9)(4,10)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,42)(30,37,43)(31,38,44)(32,39,41) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,27),(6,28),(7,25),(8,26),(13,31),(14,32),(15,29),(16,30),(17,21),(18,22),(19,23),(20,24),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,41,3,43),(2,44,4,42),(5,30,7,32),(6,29,8,31),(9,35,11,33),(10,34,12,36),(13,28,15,26),(14,27,16,25),(17,37,19,39),(18,40,20,38),(21,45,23,47),(22,48,24,46)], [(5,27),(6,28),(7,25),(8,26),(13,31),(14,32),(15,29),(16,30),(17,21),(18,22),(19,23),(20,24),(37,45),(38,46),(39,47),(40,48)], [(1,11),(2,12),(3,9),(4,10),(17,21),(18,22),(19,23),(20,24),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,7,19),(2,8,20),(3,5,17),(4,6,18),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,46,36),(14,47,33),(15,48,34),(16,45,35),(29,40,42),(30,37,43),(31,38,44),(32,39,41)])

Matrix representation G ⊆ GL5(𝔽13)

120000
012000
001200
000120
000012
,
111000
112000
00100
00010
00001
,
50000
58000
001200
000120
000012
,
10000
01000
00100
000120
000012
,
10000
01000
001200
000120
00001
,
90000
09000
00010
00001
00100

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,1,0,0,0,11,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,5,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[9,0,0,0,0,0,9,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

40 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A···4F4G···4L6A···6F12A···12L
order12222222334···44···46···612···12
size11113333442···26···64···48···8

40 irreducible representations

dim111111223336
type+++-+++-
imageC1C2C2C3C6C6Q8C3×Q8A4C2×A4C2×A4Q8×A4
kernelC2×Q8×A4C2×C4×A4Q8×A4Q8×C23C23×C4C22×Q8C2×A4C23C2×Q8C2×C4Q8C2
# reps134268241342

In GAP, Magma, Sage, TeX

C_2\times Q_8\times A_4
% in TeX

G:=Group("C2xQ8xA4");
// GroupNames label

G:=SmallGroup(192,1499);
// by ID

G=gap.SmallGroup(192,1499);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,2,176,303,142,530,909]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=d^2=e^2=f^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽