# Extensions 1→N→G→Q→1 with N=C6 and Q=C22.D4

Direct product G=N×Q with N=C6 and Q=C22.D4
dρLabelID
C6×C22.D496C6xC2^2.D4192,1413

Semidirect products G=N:Q with N=C6 and Q=C22.D4
extensionφ:Q→Aut NdρLabelID
C61(C22.D4) = C2×C23.9D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6:1(C2^2.D4)192,1047
C62(C22.D4) = C2×C23.21D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6:2(C2^2.D4)192,1051
C63(C22.D4) = C2×D6.D4φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6:3(C2^2.D4)192,1064
C64(C22.D4) = C2×C23.28D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6:4(C2^2.D4)192,1348
C65(C22.D4) = C2×C23.23D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6:5(C2^2.D4)192,1355

Non-split extensions G=N.Q with N=C6 and Q=C22.D4
extensionφ:Q→Aut NdρLabelID
C6.1(C22.D4) = C6.(C4×D4)φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.1(C2^2.D4)192,211
C6.2(C22.D4) = C2.(C4×D12)φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.2(C2^2.D4)192,212
C6.3(C22.D4) = C2.(C4×Dic6)φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.3(C2^2.D4)192,213
C6.4(C22.D4) = C6.(C4⋊Q8)φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.4(C2^2.D4)192,216
C6.5(C22.D4) = (C2×Dic3).9D4φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.5(C2^2.D4)192,217
C6.6(C22.D4) = (C2×C4).17D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.6(C2^2.D4)192,218
C6.7(C22.D4) = (C22×C4).85D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C6192C6.7(C2^2.D4)192,220
C6.8(C22.D4) = C22.58(S3×D4)φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.8(C2^2.D4)192,223
C6.9(C22.D4) = D6⋊C4⋊C4φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.9(C2^2.D4)192,227
C6.10(C22.D4) = D6⋊C43C4φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.10(C2^2.D4)192,229
C6.11(C22.D4) = (C2×C4).21D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.11(C2^2.D4)192,233
C6.12(C22.D4) = C6.(C4⋊D4)φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.12(C2^2.D4)192,234
C6.13(C22.D4) = (C2×C12).33D4φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.13(C2^2.D4)192,236
C6.14(C22.D4) = C23.39D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.14(C2^2.D4)192,280
C6.15(C22.D4) = C23.40D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.15(C2^2.D4)192,281
C6.16(C22.D4) = C23.15D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.16(C2^2.D4)192,282
C6.17(C22.D4) = C23.43D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.17(C2^2.D4)192,294
C6.18(C22.D4) = C22.D24φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.18(C2^2.D4)192,295
C6.19(C22.D4) = C23.18D12φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.19(C2^2.D4)192,296
C6.20(C22.D4) = D6.D8φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.20(C2^2.D4)192,333
C6.21(C22.D4) = D6.SD16φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.21(C2^2.D4)192,336
C6.22(C22.D4) = D6⋊C811C2φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.22(C2^2.D4)192,338
C6.23(C22.D4) = C241C4⋊C2φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.23(C2^2.D4)192,343
C6.24(C22.D4) = D6.1SD16φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.24(C2^2.D4)192,364
C6.25(C22.D4) = D6.Q16φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.25(C2^2.D4)192,370
C6.26(C22.D4) = D6⋊C8.C2φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.26(C2^2.D4)192,373
C6.27(C22.D4) = C8⋊Dic3⋊C2φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.27(C2^2.D4)192,374
C6.28(C22.D4) = C24.15D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.28(C2^2.D4)192,504
C6.29(C22.D4) = C24.18D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.29(C2^2.D4)192,508
C6.30(C22.D4) = C24.58D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.30(C2^2.D4)192,509
C6.31(C22.D4) = C24.19D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.31(C2^2.D4)192,510
C6.32(C22.D4) = C24.23D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.32(C2^2.D4)192,515
C6.33(C22.D4) = C24.60D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.33(C2^2.D4)192,517
C6.34(C22.D4) = C24.25D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.34(C2^2.D4)192,518
C6.35(C22.D4) = C24.27D6φ: C22.D4/C22⋊C4C2 ⊆ Aut C696C6.35(C2^2.D4)192,520
C6.36(C22.D4) = Dic3⋊C4⋊C4φ: C22.D4/C4⋊C4C2 ⊆ Aut C6192C6.36(C2^2.D4)192,214
C6.37(C22.D4) = (C2×C4).Dic6φ: C22.D4/C4⋊C4C2 ⊆ Aut C6192C6.37(C2^2.D4)192,219
C6.38(C22.D4) = (C2×C4)⋊9D12φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.38(C2^2.D4)192,224
C6.39(C22.D4) = D6⋊C45C4φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.39(C2^2.D4)192,228
C6.40(C22.D4) = C6.C22≀C2φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.40(C2^2.D4)192,231
C6.41(C22.D4) = D6.2SD16φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.41(C2^2.D4)192,421
C6.42(C22.D4) = D6.4SD16φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.42(C2^2.D4)192,422
C6.43(C22.D4) = C4.Q8⋊S3φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.43(C2^2.D4)192,425
C6.44(C22.D4) = C6.(C4○D8)φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.44(C2^2.D4)192,427
C6.45(C22.D4) = D6.5D8φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.45(C2^2.D4)192,441
C6.46(C22.D4) = D6.2Q16φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.46(C2^2.D4)192,443
C6.47(C22.D4) = C2.D8⋊S3φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.47(C2^2.D4)192,444
C6.48(C22.D4) = C2.D87S3φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.48(C2^2.D4)192,447
C6.49(C22.D4) = C4⋊C45Dic3φ: C22.D4/C4⋊C4C2 ⊆ Aut C6192C6.49(C2^2.D4)192,539
C6.50(C22.D4) = (C2×C12).54D4φ: C22.D4/C4⋊C4C2 ⊆ Aut C6192C6.50(C2^2.D4)192,541
C6.51(C22.D4) = D6⋊C46C4φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.51(C2^2.D4)192,548
C6.52(C22.D4) = D6⋊C47C4φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.52(C2^2.D4)192,549
C6.53(C22.D4) = (C2×C4)⋊3D12φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.53(C2^2.D4)192,550
C6.54(C22.D4) = (C2×C12).290D4φ: C22.D4/C4⋊C4C2 ⊆ Aut C696C6.54(C2^2.D4)192,552
C6.55(C22.D4) = (C2×C42).6S3φ: C22.D4/C22×C4C2 ⊆ Aut C6192C6.55(C2^2.D4)192,492
C6.56(C22.D4) = (C2×C42)⋊3S3φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.56(C2^2.D4)192,499
C6.57(C22.D4) = C24.20D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.57(C2^2.D4)192,511
C6.58(C22.D4) = (C2×C6).40D8φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.58(C2^2.D4)192,526
C6.59(C22.D4) = C4⋊C4.228D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.59(C2^2.D4)192,527
C6.60(C22.D4) = C4⋊C4.230D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.60(C2^2.D4)192,529
C6.61(C22.D4) = C4⋊C4.231D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.61(C2^2.D4)192,530
C6.62(C22.D4) = (C2×Dic3).Q8φ: C22.D4/C22×C4C2 ⊆ Aut C6192C6.62(C2^2.D4)192,542
C6.63(C22.D4) = (C2×C12).288D4φ: C22.D4/C22×C4C2 ⊆ Aut C6192C6.63(C2^2.D4)192,544
C6.64(C22.D4) = (C2×C12).289D4φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.64(C2^2.D4)192,551
C6.65(C22.D4) = C4⋊C4.233D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.65(C2^2.D4)192,555
C6.66(C22.D4) = C4⋊C4.236D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.66(C2^2.D4)192,562
C6.67(C22.D4) = C24.73D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.67(C2^2.D4)192,769
C6.68(C22.D4) = C24.74D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.68(C2^2.D4)192,770
C6.69(C22.D4) = C24.76D6φ: C22.D4/C22×C4C2 ⊆ Aut C696C6.69(C2^2.D4)192,772
C6.70(C22.D4) = C24.56D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.70(C2^2.D4)192,502
C6.71(C22.D4) = C24.14D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.71(C2^2.D4)192,503
C6.72(C22.D4) = C24.57D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.72(C2^2.D4)192,505
C6.73(C22.D4) = C24.21D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.73(C2^2.D4)192,512
C6.74(C22.D4) = C6.67(C4×D4)φ: C22.D4/C2×D4C2 ⊆ Aut C6192C6.74(C2^2.D4)192,537
C6.75(C22.D4) = (C2×C4).44D12φ: C22.D4/C2×D4C2 ⊆ Aut C6192C6.75(C2^2.D4)192,540
C6.76(C22.D4) = (C2×C12).55D4φ: C22.D4/C2×D4C2 ⊆ Aut C6192C6.76(C2^2.D4)192,545
C6.77(C22.D4) = (C2×C6).D8φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.77(C2^2.D4)192,592
C6.78(C22.D4) = C4⋊D4.S3φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.78(C2^2.D4)192,593
C6.79(C22.D4) = C6.Q16⋊C2φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.79(C2^2.D4)192,594
C6.80(C22.D4) = (C2×Q8).49D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.80(C2^2.D4)192,602
C6.81(C22.D4) = (C2×C6).Q16φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.81(C2^2.D4)192,603
C6.82(C22.D4) = (C2×Q8).51D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.82(C2^2.D4)192,604
C6.83(C22.D4) = C24.29D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.83(C2^2.D4)192,779
C6.84(C22.D4) = C24.31D6φ: C22.D4/C2×D4C2 ⊆ Aut C696C6.84(C2^2.D4)192,781
C6.85(C22.D4) = C3×C23.34D4central extension (φ=1)96C6.85(C2^2.D4)192,814
C6.86(C22.D4) = C3×C23.8Q8central extension (φ=1)96C6.86(C2^2.D4)192,818
C6.87(C22.D4) = C3×C23.23D4central extension (φ=1)96C6.87(C2^2.D4)192,819
C6.88(C22.D4) = C3×C23.63C23central extension (φ=1)192C6.88(C2^2.D4)192,820
C6.89(C22.D4) = C3×C24.C22central extension (φ=1)96C6.89(C2^2.D4)192,821
C6.90(C22.D4) = C3×C23.10D4central extension (φ=1)96C6.90(C2^2.D4)192,827
C6.91(C22.D4) = C3×C23.11D4central extension (φ=1)96C6.91(C2^2.D4)192,830
C6.92(C22.D4) = C3×C23.81C23central extension (φ=1)192C6.92(C2^2.D4)192,831
C6.93(C22.D4) = C3×C23.4Q8central extension (φ=1)96C6.93(C2^2.D4)192,832
C6.94(C22.D4) = C3×C23.83C23central extension (φ=1)192C6.94(C2^2.D4)192,833
C6.95(C22.D4) = C3×C22.D8central extension (φ=1)96C6.95(C2^2.D4)192,913
C6.96(C22.D4) = C3×C23.46D4central extension (φ=1)96C6.96(C2^2.D4)192,914
C6.97(C22.D4) = C3×C23.19D4central extension (φ=1)96C6.97(C2^2.D4)192,915
C6.98(C22.D4) = C3×C23.47D4central extension (φ=1)96C6.98(C2^2.D4)192,916
C6.99(C22.D4) = C3×C23.48D4central extension (φ=1)96C6.99(C2^2.D4)192,917
C6.100(C22.D4) = C3×C23.20D4central extension (φ=1)96C6.100(C2^2.D4)192,918

׿
×
𝔽