Copied to
clipboard

G = D6.2SD16order 192 = 26·3

2nd non-split extension by D6 of SD16 acting via SD16/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.2SD16, C4.Q86S3, C4⋊C4.36D6, D6⋊C8.13C2, (C2×C8).137D6, C4.D12.4C2, C6.38(C2×SD16), C2.22(S3×SD16), C4.72(C4○D12), C12.27(C4○D4), C6.SD1615C2, C12.Q816C2, C2.Dic1231C2, (C2×Dic3).40D4, (C22×S3).82D4, C22.214(S3×D4), (C2×C24).284C22, (C2×C12).278C23, C4.24(Q83S3), C2.23(D4.D6), C6.42(C8.C22), C33(C23.47D4), C2.11(D6.D4), C4⋊Dic3.110C22, (C2×Dic6).82C22, C6.41(C22.D4), (S3×C4⋊C4).6C2, (C3×C4.Q8)⋊15C2, (C2×C6).283(C2×D4), (C2×C3⋊C8).56C22, (S3×C2×C4).31C22, (C3×C4⋊C4).71C22, (C2×C4).381(C22×S3), SmallGroup(192,421)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6.2SD16
C1C3C6C2×C6C2×C12S3×C2×C4S3×C4⋊C4 — D6.2SD16
C3C6C2×C12 — D6.2SD16
C1C22C2×C4C4.Q8

Generators and relations for D6.2SD16
 G = < a,b,c,d | a6=b2=c8=1, d2=a3, bab=a-1, ac=ca, ad=da, cbc-1=a3b, bd=db, dcd-1=c3 >

Subgroups: 304 in 104 conjugacy classes, 39 normal (37 characteristic)
C1, C2 [×3], C2 [×2], C3, C4 [×2], C4 [×5], C22, C22 [×4], S3 [×2], C6 [×3], C8 [×2], C2×C4, C2×C4 [×9], Q8 [×2], C23, Dic3 [×3], C12 [×2], C12 [×2], D6 [×2], D6 [×2], C2×C6, C22⋊C4, C4⋊C4 [×2], C4⋊C4 [×3], C2×C8, C2×C8, C22×C4 [×2], C2×Q8, C3⋊C8, C24, Dic6 [×2], C4×S3 [×4], C2×Dic3, C2×Dic3 [×2], C2×C12, C2×C12 [×2], C22×S3, C22⋊C8, Q8⋊C4 [×2], C4.Q8, C4.Q8, C2×C4⋊C4, C22⋊Q8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C3×C4⋊C4 [×2], C2×C24, C2×Dic6, S3×C2×C4, S3×C2×C4, C23.47D4, C12.Q8, C6.SD16, C2.Dic12, D6⋊C8, C3×C4.Q8, S3×C4⋊C4, C4.D12, D6.2SD16
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×2], C23, D6 [×3], SD16 [×2], C2×D4, C4○D4 [×2], C22×S3, C22.D4, C2×SD16, C8.C22, C4○D12, S3×D4, Q83S3, C23.47D4, D6.D4, S3×SD16, D4.D6, D6.2SD16

Smallest permutation representation of D6.2SD16
On 96 points
Generators in S96
(1 45 22 77 53 62)(2 46 23 78 54 63)(3 47 24 79 55 64)(4 48 17 80 56 57)(5 41 18 73 49 58)(6 42 19 74 50 59)(7 43 20 75 51 60)(8 44 21 76 52 61)(9 29 39 95 83 69)(10 30 40 96 84 70)(11 31 33 89 85 71)(12 32 34 90 86 72)(13 25 35 91 87 65)(14 26 36 92 88 66)(15 27 37 93 81 67)(16 28 38 94 82 68)
(1 58)(2 19)(3 60)(4 21)(5 62)(6 23)(7 64)(8 17)(9 65)(10 36)(11 67)(12 38)(13 69)(14 40)(15 71)(16 34)(18 77)(20 79)(22 73)(24 75)(25 83)(26 30)(27 85)(28 32)(29 87)(31 81)(33 93)(35 95)(37 89)(39 91)(41 53)(42 46)(43 55)(44 48)(45 49)(47 51)(50 54)(52 56)(57 76)(59 78)(61 80)(63 74)(66 96)(68 90)(70 92)(72 94)(82 86)(84 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 9 77 95)(2 12 78 90)(3 15 79 93)(4 10 80 96)(5 13 73 91)(6 16 74 94)(7 11 75 89)(8 14 76 92)(17 40 57 70)(18 35 58 65)(19 38 59 68)(20 33 60 71)(21 36 61 66)(22 39 62 69)(23 34 63 72)(24 37 64 67)(25 49 87 41)(26 52 88 44)(27 55 81 47)(28 50 82 42)(29 53 83 45)(30 56 84 48)(31 51 85 43)(32 54 86 46)

G:=sub<Sym(96)| (1,45,22,77,53,62)(2,46,23,78,54,63)(3,47,24,79,55,64)(4,48,17,80,56,57)(5,41,18,73,49,58)(6,42,19,74,50,59)(7,43,20,75,51,60)(8,44,21,76,52,61)(9,29,39,95,83,69)(10,30,40,96,84,70)(11,31,33,89,85,71)(12,32,34,90,86,72)(13,25,35,91,87,65)(14,26,36,92,88,66)(15,27,37,93,81,67)(16,28,38,94,82,68), (1,58)(2,19)(3,60)(4,21)(5,62)(6,23)(7,64)(8,17)(9,65)(10,36)(11,67)(12,38)(13,69)(14,40)(15,71)(16,34)(18,77)(20,79)(22,73)(24,75)(25,83)(26,30)(27,85)(28,32)(29,87)(31,81)(33,93)(35,95)(37,89)(39,91)(41,53)(42,46)(43,55)(44,48)(45,49)(47,51)(50,54)(52,56)(57,76)(59,78)(61,80)(63,74)(66,96)(68,90)(70,92)(72,94)(82,86)(84,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,9,77,95)(2,12,78,90)(3,15,79,93)(4,10,80,96)(5,13,73,91)(6,16,74,94)(7,11,75,89)(8,14,76,92)(17,40,57,70)(18,35,58,65)(19,38,59,68)(20,33,60,71)(21,36,61,66)(22,39,62,69)(23,34,63,72)(24,37,64,67)(25,49,87,41)(26,52,88,44)(27,55,81,47)(28,50,82,42)(29,53,83,45)(30,56,84,48)(31,51,85,43)(32,54,86,46)>;

G:=Group( (1,45,22,77,53,62)(2,46,23,78,54,63)(3,47,24,79,55,64)(4,48,17,80,56,57)(5,41,18,73,49,58)(6,42,19,74,50,59)(7,43,20,75,51,60)(8,44,21,76,52,61)(9,29,39,95,83,69)(10,30,40,96,84,70)(11,31,33,89,85,71)(12,32,34,90,86,72)(13,25,35,91,87,65)(14,26,36,92,88,66)(15,27,37,93,81,67)(16,28,38,94,82,68), (1,58)(2,19)(3,60)(4,21)(5,62)(6,23)(7,64)(8,17)(9,65)(10,36)(11,67)(12,38)(13,69)(14,40)(15,71)(16,34)(18,77)(20,79)(22,73)(24,75)(25,83)(26,30)(27,85)(28,32)(29,87)(31,81)(33,93)(35,95)(37,89)(39,91)(41,53)(42,46)(43,55)(44,48)(45,49)(47,51)(50,54)(52,56)(57,76)(59,78)(61,80)(63,74)(66,96)(68,90)(70,92)(72,94)(82,86)(84,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,9,77,95)(2,12,78,90)(3,15,79,93)(4,10,80,96)(5,13,73,91)(6,16,74,94)(7,11,75,89)(8,14,76,92)(17,40,57,70)(18,35,58,65)(19,38,59,68)(20,33,60,71)(21,36,61,66)(22,39,62,69)(23,34,63,72)(24,37,64,67)(25,49,87,41)(26,52,88,44)(27,55,81,47)(28,50,82,42)(29,53,83,45)(30,56,84,48)(31,51,85,43)(32,54,86,46) );

G=PermutationGroup([(1,45,22,77,53,62),(2,46,23,78,54,63),(3,47,24,79,55,64),(4,48,17,80,56,57),(5,41,18,73,49,58),(6,42,19,74,50,59),(7,43,20,75,51,60),(8,44,21,76,52,61),(9,29,39,95,83,69),(10,30,40,96,84,70),(11,31,33,89,85,71),(12,32,34,90,86,72),(13,25,35,91,87,65),(14,26,36,92,88,66),(15,27,37,93,81,67),(16,28,38,94,82,68)], [(1,58),(2,19),(3,60),(4,21),(5,62),(6,23),(7,64),(8,17),(9,65),(10,36),(11,67),(12,38),(13,69),(14,40),(15,71),(16,34),(18,77),(20,79),(22,73),(24,75),(25,83),(26,30),(27,85),(28,32),(29,87),(31,81),(33,93),(35,95),(37,89),(39,91),(41,53),(42,46),(43,55),(44,48),(45,49),(47,51),(50,54),(52,56),(57,76),(59,78),(61,80),(63,74),(66,96),(68,90),(70,92),(72,94),(82,86),(84,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,9,77,95),(2,12,78,90),(3,15,79,93),(4,10,80,96),(5,13,73,91),(6,16,74,94),(7,11,75,89),(8,14,76,92),(17,40,57,70),(18,35,58,65),(19,38,59,68),(20,33,60,71),(21,36,61,66),(22,39,62,69),(23,34,63,72),(24,37,64,67),(25,49,87,41),(26,52,88,44),(27,55,81,47),(28,50,82,42),(29,53,83,45),(30,56,84,48),(31,51,85,43),(32,54,86,46)])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222223444444444666888812121212121224242424
size111166222448121212242224412124488884444

33 irreducible representations

dim111111112222222244444
type+++++++++++++-++-
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C4○D4SD16C4○D12C8.C22Q83S3S3×D4S3×SD16D4.D6
kernelD6.2SD16C12.Q8C6.SD16C2.Dic12D6⋊C8C3×C4.Q8S3×C4⋊C4C4.D12C4.Q8C2×Dic3C22×S3C4⋊C4C2×C8C12D6C4C6C4C22C2C2
# reps111111111112144411122

Matrix representation of D6.2SD16 in GL4(𝔽73) generated by

1100
72000
0010
0001
,
1100
07200
00720
00072
,
306000
134300
00676
006767
,
46000
04600
006744
00446
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,1,72,0,0,0,0,72,0,0,0,0,72],[30,13,0,0,60,43,0,0,0,0,67,67,0,0,6,67],[46,0,0,0,0,46,0,0,0,0,67,44,0,0,44,6] >;

D6.2SD16 in GAP, Magma, Sage, TeX

D_6._2{\rm SD}_{16}
% in TeX

G:=Group("D6.2SD16");
// GroupNames label

G:=SmallGroup(192,421);
// by ID

G=gap.SmallGroup(192,421);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,254,219,100,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽