Copied to
clipboard

G = D6⋊C811C2order 192 = 26·3

11st semidirect product of D6⋊C8 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6⋊C811C2, C4⋊C4.137D6, (C2×D4).27D6, C8⋊Dic313C2, C6.Q167C2, (C2×C8).116D6, D4⋊C412S3, D63D4.4C2, C6.41(C4○D8), D4⋊Dic39C2, C4.53(C4○D12), C2.15(D8⋊S3), C6.33(C8⋊C22), (C22×S3).11D4, (C6×D4).40C22, C22.177(S3×D4), C12.151(C4○D4), C4.80(D42S3), (C2×C12).219C23, (C2×C24).127C22, (C2×Dic3).141D4, C32(C23.19D4), C4⋊Dic3.73C22, C2.11(Q8.7D6), C2.14(C23.9D6), C6.22(C22.D4), C4⋊C47S33C2, (C2×C6).232(C2×D4), (C2×C3⋊C8).17C22, (S3×C2×C4).11C22, (C3×D4⋊C4)⋊12C2, (C3×C4⋊C4).20C22, (C2×C4).326(C22×S3), SmallGroup(192,338)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6⋊C811C2
C1C3C6C2×C6C2×C12S3×C2×C4C4⋊C47S3 — D6⋊C811C2
C3C6C2×C12 — D6⋊C811C2
C1C22C2×C4D4⋊C4

Generators and relations for D6⋊C811C2
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=a3b, dbd=a3bc4, dcd=a3c3 >

Subgroups: 328 in 106 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22⋊C8, D4⋊C4, D4⋊C4, C4.Q8, C2.D8, C42⋊C2, C4⋊D4, C2×C3⋊C8, C4×Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×C3⋊D4, C6×D4, C23.19D4, C6.Q16, C8⋊Dic3, D6⋊C8, D4⋊Dic3, C3×D4⋊C4, C4⋊C47S3, D63D4, D6⋊C811C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C22.D4, C4○D8, C8⋊C22, C4○D12, S3×D4, D42S3, C23.19D4, C23.9D6, D8⋊S3, Q8.7D6, D6⋊C811C2

Smallest permutation representation of D6⋊C811C2
On 96 points
Generators in S96
(1 61 33 20 94 79)(2 62 34 21 95 80)(3 63 35 22 96 73)(4 64 36 23 89 74)(5 57 37 24 90 75)(6 58 38 17 91 76)(7 59 39 18 92 77)(8 60 40 19 93 78)(9 87 71 30 45 51)(10 88 72 31 46 52)(11 81 65 32 47 53)(12 82 66 25 48 54)(13 83 67 26 41 55)(14 84 68 27 42 56)(15 85 69 28 43 49)(16 86 70 29 44 50)
(1 75)(2 38)(3 77)(4 40)(5 79)(6 34)(7 73)(8 36)(9 71)(10 52)(11 65)(12 54)(13 67)(14 56)(15 69)(16 50)(17 80)(18 35)(19 74)(20 37)(21 76)(22 39)(23 78)(24 33)(25 66)(26 55)(27 68)(28 49)(29 70)(30 51)(31 72)(32 53)(42 84)(44 86)(46 88)(48 82)(57 94)(58 62)(59 96)(60 64)(61 90)(63 92)(89 93)(91 95)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 30)(2 12)(3 28)(4 10)(5 26)(6 16)(7 32)(8 14)(9 20)(11 18)(13 24)(15 22)(17 29)(19 27)(21 25)(23 31)(33 51)(34 66)(35 49)(36 72)(37 55)(38 70)(39 53)(40 68)(41 57)(42 93)(43 63)(44 91)(45 61)(46 89)(47 59)(48 95)(50 76)(52 74)(54 80)(56 78)(58 86)(60 84)(62 82)(64 88)(65 77)(67 75)(69 73)(71 79)(81 92)(83 90)(85 96)(87 94)

G:=sub<Sym(96)| (1,61,33,20,94,79)(2,62,34,21,95,80)(3,63,35,22,96,73)(4,64,36,23,89,74)(5,57,37,24,90,75)(6,58,38,17,91,76)(7,59,39,18,92,77)(8,60,40,19,93,78)(9,87,71,30,45,51)(10,88,72,31,46,52)(11,81,65,32,47,53)(12,82,66,25,48,54)(13,83,67,26,41,55)(14,84,68,27,42,56)(15,85,69,28,43,49)(16,86,70,29,44,50), (1,75)(2,38)(3,77)(4,40)(5,79)(6,34)(7,73)(8,36)(9,71)(10,52)(11,65)(12,54)(13,67)(14,56)(15,69)(16,50)(17,80)(18,35)(19,74)(20,37)(21,76)(22,39)(23,78)(24,33)(25,66)(26,55)(27,68)(28,49)(29,70)(30,51)(31,72)(32,53)(42,84)(44,86)(46,88)(48,82)(57,94)(58,62)(59,96)(60,64)(61,90)(63,92)(89,93)(91,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,30)(2,12)(3,28)(4,10)(5,26)(6,16)(7,32)(8,14)(9,20)(11,18)(13,24)(15,22)(17,29)(19,27)(21,25)(23,31)(33,51)(34,66)(35,49)(36,72)(37,55)(38,70)(39,53)(40,68)(41,57)(42,93)(43,63)(44,91)(45,61)(46,89)(47,59)(48,95)(50,76)(52,74)(54,80)(56,78)(58,86)(60,84)(62,82)(64,88)(65,77)(67,75)(69,73)(71,79)(81,92)(83,90)(85,96)(87,94)>;

G:=Group( (1,61,33,20,94,79)(2,62,34,21,95,80)(3,63,35,22,96,73)(4,64,36,23,89,74)(5,57,37,24,90,75)(6,58,38,17,91,76)(7,59,39,18,92,77)(8,60,40,19,93,78)(9,87,71,30,45,51)(10,88,72,31,46,52)(11,81,65,32,47,53)(12,82,66,25,48,54)(13,83,67,26,41,55)(14,84,68,27,42,56)(15,85,69,28,43,49)(16,86,70,29,44,50), (1,75)(2,38)(3,77)(4,40)(5,79)(6,34)(7,73)(8,36)(9,71)(10,52)(11,65)(12,54)(13,67)(14,56)(15,69)(16,50)(17,80)(18,35)(19,74)(20,37)(21,76)(22,39)(23,78)(24,33)(25,66)(26,55)(27,68)(28,49)(29,70)(30,51)(31,72)(32,53)(42,84)(44,86)(46,88)(48,82)(57,94)(58,62)(59,96)(60,64)(61,90)(63,92)(89,93)(91,95), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,30)(2,12)(3,28)(4,10)(5,26)(6,16)(7,32)(8,14)(9,20)(11,18)(13,24)(15,22)(17,29)(19,27)(21,25)(23,31)(33,51)(34,66)(35,49)(36,72)(37,55)(38,70)(39,53)(40,68)(41,57)(42,93)(43,63)(44,91)(45,61)(46,89)(47,59)(48,95)(50,76)(52,74)(54,80)(56,78)(58,86)(60,84)(62,82)(64,88)(65,77)(67,75)(69,73)(71,79)(81,92)(83,90)(85,96)(87,94) );

G=PermutationGroup([[(1,61,33,20,94,79),(2,62,34,21,95,80),(3,63,35,22,96,73),(4,64,36,23,89,74),(5,57,37,24,90,75),(6,58,38,17,91,76),(7,59,39,18,92,77),(8,60,40,19,93,78),(9,87,71,30,45,51),(10,88,72,31,46,52),(11,81,65,32,47,53),(12,82,66,25,48,54),(13,83,67,26,41,55),(14,84,68,27,42,56),(15,85,69,28,43,49),(16,86,70,29,44,50)], [(1,75),(2,38),(3,77),(4,40),(5,79),(6,34),(7,73),(8,36),(9,71),(10,52),(11,65),(12,54),(13,67),(14,56),(15,69),(16,50),(17,80),(18,35),(19,74),(20,37),(21,76),(22,39),(23,78),(24,33),(25,66),(26,55),(27,68),(28,49),(29,70),(30,51),(31,72),(32,53),(42,84),(44,86),(46,88),(48,82),(57,94),(58,62),(59,96),(60,64),(61,90),(63,92),(89,93),(91,95)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,30),(2,12),(3,28),(4,10),(5,26),(6,16),(7,32),(8,14),(9,20),(11,18),(13,24),(15,22),(17,29),(19,27),(21,25),(23,31),(33,51),(34,66),(35,49),(36,72),(37,55),(38,70),(39,53),(40,68),(41,57),(42,93),(43,63),(44,91),(45,61),(46,89),(47,59),(48,95),(50,76),(52,74),(54,80),(56,78),(58,86),(60,84),(62,82),(64,88),(65,77),(67,75),(69,73),(71,79),(81,92),(83,90),(85,96),(87,94)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444446666688881212121224242424
size111181222244661212242228844121244884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++-+
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C4○D4C4○D8C4○D12C8⋊C22D42S3S3×D4D8⋊S3Q8.7D6
kernelD6⋊C811C2C6.Q16C8⋊Dic3D6⋊C8D4⋊Dic3C3×D4⋊C4C4⋊C47S3D63D4D4⋊C4C2×Dic3C22×S3C4⋊C4C2×C8C2×D4C12C6C4C6C4C22C2C2
# reps1111111111111144411122

Matrix representation of D6⋊C811C2 in GL4(𝔽73) generated by

1000
0100
00072
0011
,
72000
0100
00072
00720
,
51000
01000
006659
00147
,
0100
1000
003060
001343
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,1],[72,0,0,0,0,1,0,0,0,0,0,72,0,0,72,0],[51,0,0,0,0,10,0,0,0,0,66,14,0,0,59,7],[0,1,0,0,1,0,0,0,0,0,30,13,0,0,60,43] >;

D6⋊C811C2 in GAP, Magma, Sage, TeX

D_6\rtimes C_8\rtimes_{11}C_2
% in TeX

G:=Group("D6:C8:11C2");
// GroupNames label

G:=SmallGroup(192,338);
// by ID

G=gap.SmallGroup(192,338);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,64,254,219,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^3*b,d*b*d=a^3*b*c^4,d*c*d=a^3*c^3>;
// generators/relations

׿
×
𝔽