Copied to
clipboard

G = C6.(C4○D8)  order 192 = 26·3

22nd non-split extension by C6 of C4○D8 acting via C4○D8/SD16=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.42D6, C4.Q810S3, D6⋊C8.14C2, (C2×C8).140D6, C6.57(C4○D8), C6.Q1617C2, C4.D12.6C2, C12.33(C4○D4), C4.75(C4○D12), C6.SD1618C2, C2.Dic1232C2, (C22×S3).27D4, C22.220(S3×D4), (C2×C24).287C22, (C2×C12).284C23, C4.27(Q83S3), (C2×Dic3).164D4, C2.25(D4.D6), C6.44(C8.C22), C34(C23.20D4), C2.24(Q8.7D6), C2.14(D6.D4), C4⋊Dic3.113C22, (C2×Dic6).85C22, C6.44(C22.D4), (C3×C4.Q8)⋊18C2, C4⋊C47S3.6C2, (C2×C6).289(C2×D4), (C2×C3⋊C8).61C22, (S3×C2×C4).36C22, (C3×C4⋊C4).77C22, (C2×C4).387(C22×S3), SmallGroup(192,427)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C6.(C4○D8)
C1C3C6C2×C6C2×C12S3×C2×C4C4⋊C47S3 — C6.(C4○D8)
C3C6C2×C12 — C6.(C4○D8)
C1C22C2×C4C4.Q8

Generators and relations for C6.(C4○D8)
 G = < a,b,c,d | a6=b4=1, c4=b2, d2=a3, bab-1=cac-1=dad-1=a-1, cbc-1=a3b, bd=db, dcd-1=b2c3 >

Subgroups: 272 in 96 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22⋊C8, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22⋊Q8, C2×C3⋊C8, C4×Dic3, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C23.20D4, C6.Q16, C6.SD16, C2.Dic12, D6⋊C8, C3×C4.Q8, C4⋊C47S3, C4.D12, C6.(C4○D8)
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C22.D4, C4○D8, C8.C22, C4○D12, S3×D4, Q83S3, C23.20D4, D6.D4, D4.D6, Q8.7D6, C6.(C4○D8)

Smallest permutation representation of C6.(C4○D8)
On 96 points
Generators in S96
(1 71 61 83 42 10)(2 11 43 84 62 72)(3 65 63 85 44 12)(4 13 45 86 64 66)(5 67 57 87 46 14)(6 15 47 88 58 68)(7 69 59 81 48 16)(8 9 41 82 60 70)(17 93 75 51 27 38)(18 39 28 52 76 94)(19 95 77 53 29 40)(20 33 30 54 78 96)(21 89 79 55 31 34)(22 35 32 56 80 90)(23 91 73 49 25 36)(24 37 26 50 74 92)
(1 85 5 81)(2 4 6 8)(3 87 7 83)(9 72 13 68)(10 44 14 48)(11 66 15 70)(12 46 16 42)(17 23 21 19)(18 50 22 54)(20 52 24 56)(25 79 29 75)(26 35 30 39)(27 73 31 77)(28 37 32 33)(34 95 38 91)(36 89 40 93)(41 62 45 58)(43 64 47 60)(49 55 53 51)(57 69 61 65)(59 71 63 67)(74 90 78 94)(76 92 80 96)(82 84 86 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 18 83 52)(2 17 84 51)(3 24 85 50)(4 23 86 49)(5 22 87 56)(6 21 88 55)(7 20 81 54)(8 19 82 53)(9 40 60 77)(10 39 61 76)(11 38 62 75)(12 37 63 74)(13 36 64 73)(14 35 57 80)(15 34 58 79)(16 33 59 78)(25 66 91 45)(26 65 92 44)(27 72 93 43)(28 71 94 42)(29 70 95 41)(30 69 96 48)(31 68 89 47)(32 67 90 46)

G:=sub<Sym(96)| (1,71,61,83,42,10)(2,11,43,84,62,72)(3,65,63,85,44,12)(4,13,45,86,64,66)(5,67,57,87,46,14)(6,15,47,88,58,68)(7,69,59,81,48,16)(8,9,41,82,60,70)(17,93,75,51,27,38)(18,39,28,52,76,94)(19,95,77,53,29,40)(20,33,30,54,78,96)(21,89,79,55,31,34)(22,35,32,56,80,90)(23,91,73,49,25,36)(24,37,26,50,74,92), (1,85,5,81)(2,4,6,8)(3,87,7,83)(9,72,13,68)(10,44,14,48)(11,66,15,70)(12,46,16,42)(17,23,21,19)(18,50,22,54)(20,52,24,56)(25,79,29,75)(26,35,30,39)(27,73,31,77)(28,37,32,33)(34,95,38,91)(36,89,40,93)(41,62,45,58)(43,64,47,60)(49,55,53,51)(57,69,61,65)(59,71,63,67)(74,90,78,94)(76,92,80,96)(82,84,86,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,18,83,52)(2,17,84,51)(3,24,85,50)(4,23,86,49)(5,22,87,56)(6,21,88,55)(7,20,81,54)(8,19,82,53)(9,40,60,77)(10,39,61,76)(11,38,62,75)(12,37,63,74)(13,36,64,73)(14,35,57,80)(15,34,58,79)(16,33,59,78)(25,66,91,45)(26,65,92,44)(27,72,93,43)(28,71,94,42)(29,70,95,41)(30,69,96,48)(31,68,89,47)(32,67,90,46)>;

G:=Group( (1,71,61,83,42,10)(2,11,43,84,62,72)(3,65,63,85,44,12)(4,13,45,86,64,66)(5,67,57,87,46,14)(6,15,47,88,58,68)(7,69,59,81,48,16)(8,9,41,82,60,70)(17,93,75,51,27,38)(18,39,28,52,76,94)(19,95,77,53,29,40)(20,33,30,54,78,96)(21,89,79,55,31,34)(22,35,32,56,80,90)(23,91,73,49,25,36)(24,37,26,50,74,92), (1,85,5,81)(2,4,6,8)(3,87,7,83)(9,72,13,68)(10,44,14,48)(11,66,15,70)(12,46,16,42)(17,23,21,19)(18,50,22,54)(20,52,24,56)(25,79,29,75)(26,35,30,39)(27,73,31,77)(28,37,32,33)(34,95,38,91)(36,89,40,93)(41,62,45,58)(43,64,47,60)(49,55,53,51)(57,69,61,65)(59,71,63,67)(74,90,78,94)(76,92,80,96)(82,84,86,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,18,83,52)(2,17,84,51)(3,24,85,50)(4,23,86,49)(5,22,87,56)(6,21,88,55)(7,20,81,54)(8,19,82,53)(9,40,60,77)(10,39,61,76)(11,38,62,75)(12,37,63,74)(13,36,64,73)(14,35,57,80)(15,34,58,79)(16,33,59,78)(25,66,91,45)(26,65,92,44)(27,72,93,43)(28,71,94,42)(29,70,95,41)(30,69,96,48)(31,68,89,47)(32,67,90,46) );

G=PermutationGroup([[(1,71,61,83,42,10),(2,11,43,84,62,72),(3,65,63,85,44,12),(4,13,45,86,64,66),(5,67,57,87,46,14),(6,15,47,88,58,68),(7,69,59,81,48,16),(8,9,41,82,60,70),(17,93,75,51,27,38),(18,39,28,52,76,94),(19,95,77,53,29,40),(20,33,30,54,78,96),(21,89,79,55,31,34),(22,35,32,56,80,90),(23,91,73,49,25,36),(24,37,26,50,74,92)], [(1,85,5,81),(2,4,6,8),(3,87,7,83),(9,72,13,68),(10,44,14,48),(11,66,15,70),(12,46,16,42),(17,23,21,19),(18,50,22,54),(20,52,24,56),(25,79,29,75),(26,35,30,39),(27,73,31,77),(28,37,32,33),(34,95,38,91),(36,89,40,93),(41,62,45,58),(43,64,47,60),(49,55,53,51),(57,69,61,65),(59,71,63,67),(74,90,78,94),(76,92,80,96),(82,84,86,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,18,83,52),(2,17,84,51),(3,24,85,50),(4,23,86,49),(5,22,87,56),(6,21,88,55),(7,20,81,54),(8,19,82,53),(9,40,60,77),(10,39,61,76),(11,38,62,75),(12,37,63,74),(13,36,64,73),(14,35,57,80),(15,34,58,79),(16,33,59,78),(25,66,91,45),(26,65,92,44),(27,72,93,43),(28,71,94,42),(29,70,95,41),(30,69,96,48),(31,68,89,47),(32,67,90,46)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222234444444444666888812121212121224242424
size111112222446681212242224412124488884444

33 irreducible representations

dim111111112222222244444
type+++++++++++++-++-
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C4○D4C4○D8C4○D12C8.C22Q83S3S3×D4D4.D6Q8.7D6
kernelC6.(C4○D8)C6.Q16C6.SD16C2.Dic12D6⋊C8C3×C4.Q8C4⋊C47S3C4.D12C4.Q8C2×Dic3C22×S3C4⋊C4C2×C8C12C6C4C6C4C22C2C2
# reps111111111112144411122

Matrix representation of C6.(C4○D8) in GL6(𝔽73)

7200000
0720000
001000
000100
0000072
0000172
,
7200000
010000
0046000
0004600
000001
000010
,
0720000
7200000
0022000
00551000
0000072
0000720
,
4600000
0460000
00707100
004300
0000072
0000720

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,22,55,0,0,0,0,0,10,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,70,4,0,0,0,0,71,3,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;

C6.(C4○D8) in GAP, Magma, Sage, TeX

C_6.(C_4\circ D_8)
% in TeX

G:=Group("C6.(C4oD8)");
// GroupNames label

G:=SmallGroup(192,427);
// by ID

G=gap.SmallGroup(192,427);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,64,926,219,100,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=1,c^4=b^2,d^2=a^3,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^3*b,b*d=d*b,d*c*d^-1=b^2*c^3>;
// generators/relations

׿
×
𝔽