Copied to
clipboard

G = (C2xQ8).51D6order 192 = 26·3

27th non-split extension by C2xQ8 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4.65D6, (C2xQ8).51D6, C22:Q8.4S3, C6.99(C4oD8), (C2xC12).265D4, C6.Q16:39C2, (C22xC6).91D4, Q8:2Dic3:14C2, C12.Q8:38C2, (C22xC4).142D6, C12.189(C4oD4), (C6xQ8).45C22, C4.95(D4:2S3), (C2xC12).364C23, C12.55D4.8C2, C6.89(C8.C22), C3:7(C23.20D4), C23.33(C3:D4), C2.18(Q8.13D6), C4:Dic3.339C22, C2.10(Q8.11D6), (C22xC12).168C22, C23.26D6.14C2, C6.82(C22.D4), C2.16(C23.23D6), (C2xC6).495(C2xD4), (C3xC22:Q8).3C2, (C2xC3:C8).114C22, (C2xC4).172(C3:D4), (C3xC4:C4).112C22, (C2xC4).464(C22xS3), C22.170(C2xC3:D4), SmallGroup(192,604)

Series: Derived Chief Lower central Upper central

C1C2xC12 — (C2xQ8).51D6
C1C3C6C12C2xC12C4:Dic3C23.26D6 — (C2xQ8).51D6
C3C6C2xC12 — (C2xQ8).51D6
C1C22C22xC4C22:Q8

Generators and relations for (C2xQ8).51D6
 G = < a,b,c,d,e | a2=b4=1, c2=d6=b2, e2=a, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe-1=b-1, bd=db, dcd-1=ab2c, ece-1=b-1c, ede-1=d5 >

Subgroups: 224 in 96 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C22xC4, C2xQ8, C3:C8, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xC6, C22:C8, Q8:C4, C4.Q8, C2.D8, C42:C2, C22:Q8, C2xC3:C8, C4xDic3, C4:Dic3, C6.D4, C3xC22:C4, C3xC4:C4, C3xC4:C4, C22xC12, C6xQ8, C23.20D4, C6.Q16, C12.Q8, C12.55D4, Q8:2Dic3, C23.26D6, C3xC22:Q8, (C2xQ8).51D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C22.D4, C4oD8, C8.C22, D4:2S3, C2xC3:D4, C23.20D4, C23.23D6, Q8.11D6, Q8.13D6, (C2xQ8).51D6

Smallest permutation representation of (C2xQ8).51D6
On 96 points
Generators in S96
(1 33)(2 34)(3 35)(4 36)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 86)(14 87)(15 88)(16 89)(17 90)(18 91)(19 92)(20 93)(21 94)(22 95)(23 96)(24 85)(37 79)(38 80)(39 81)(40 82)(41 83)(42 84)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 72)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(57 68)(58 69)(59 70)(60 71)
(1 30 7 36)(2 31 8 25)(3 32 9 26)(4 33 10 27)(5 34 11 28)(6 35 12 29)(13 89 19 95)(14 90 20 96)(15 91 21 85)(16 92 22 86)(17 93 23 87)(18 94 24 88)(37 46 43 40)(38 47 44 41)(39 48 45 42)(49 52 55 58)(50 53 56 59)(51 54 57 60)(61 64 67 70)(62 65 68 71)(63 66 69 72)(73 82 79 76)(74 83 80 77)(75 84 81 78)
(1 42 7 48)(2 79 8 73)(3 44 9 38)(4 81 10 75)(5 46 11 40)(6 83 12 77)(13 61 19 67)(14 57 20 51)(15 63 21 69)(16 59 22 53)(17 65 23 71)(18 49 24 55)(25 76 31 82)(26 41 32 47)(27 78 33 84)(28 43 34 37)(29 80 35 74)(30 45 36 39)(50 92 56 86)(52 94 58 88)(54 96 60 90)(62 87 68 93)(64 89 70 95)(66 91 72 85)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 22 33 95)(2 15 34 88)(3 20 35 93)(4 13 36 86)(5 18 25 91)(6 23 26 96)(7 16 27 89)(8 21 28 94)(9 14 29 87)(10 19 30 92)(11 24 31 85)(12 17 32 90)(37 55 79 66)(38 60 80 71)(39 53 81 64)(40 58 82 69)(41 51 83 62)(42 56 84 67)(43 49 73 72)(44 54 74 65)(45 59 75 70)(46 52 76 63)(47 57 77 68)(48 50 78 61)

G:=sub<Sym(96)| (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,72)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71), (1,30,7,36)(2,31,8,25)(3,32,9,26)(4,33,10,27)(5,34,11,28)(6,35,12,29)(13,89,19,95)(14,90,20,96)(15,91,21,85)(16,92,22,86)(17,93,23,87)(18,94,24,88)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,64,67,70)(62,65,68,71)(63,66,69,72)(73,82,79,76)(74,83,80,77)(75,84,81,78), (1,42,7,48)(2,79,8,73)(3,44,9,38)(4,81,10,75)(5,46,11,40)(6,83,12,77)(13,61,19,67)(14,57,20,51)(15,63,21,69)(16,59,22,53)(17,65,23,71)(18,49,24,55)(25,76,31,82)(26,41,32,47)(27,78,33,84)(28,43,34,37)(29,80,35,74)(30,45,36,39)(50,92,56,86)(52,94,58,88)(54,96,60,90)(62,87,68,93)(64,89,70,95)(66,91,72,85), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,33,95)(2,15,34,88)(3,20,35,93)(4,13,36,86)(5,18,25,91)(6,23,26,96)(7,16,27,89)(8,21,28,94)(9,14,29,87)(10,19,30,92)(11,24,31,85)(12,17,32,90)(37,55,79,66)(38,60,80,71)(39,53,81,64)(40,58,82,69)(41,51,83,62)(42,56,84,67)(43,49,73,72)(44,54,74,65)(45,59,75,70)(46,52,76,63)(47,57,77,68)(48,50,78,61)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,86)(14,87)(15,88)(16,89)(17,90)(18,91)(19,92)(20,93)(21,94)(22,95)(23,96)(24,85)(37,79)(38,80)(39,81)(40,82)(41,83)(42,84)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,72)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71), (1,30,7,36)(2,31,8,25)(3,32,9,26)(4,33,10,27)(5,34,11,28)(6,35,12,29)(13,89,19,95)(14,90,20,96)(15,91,21,85)(16,92,22,86)(17,93,23,87)(18,94,24,88)(37,46,43,40)(38,47,44,41)(39,48,45,42)(49,52,55,58)(50,53,56,59)(51,54,57,60)(61,64,67,70)(62,65,68,71)(63,66,69,72)(73,82,79,76)(74,83,80,77)(75,84,81,78), (1,42,7,48)(2,79,8,73)(3,44,9,38)(4,81,10,75)(5,46,11,40)(6,83,12,77)(13,61,19,67)(14,57,20,51)(15,63,21,69)(16,59,22,53)(17,65,23,71)(18,49,24,55)(25,76,31,82)(26,41,32,47)(27,78,33,84)(28,43,34,37)(29,80,35,74)(30,45,36,39)(50,92,56,86)(52,94,58,88)(54,96,60,90)(62,87,68,93)(64,89,70,95)(66,91,72,85), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,33,95)(2,15,34,88)(3,20,35,93)(4,13,36,86)(5,18,25,91)(6,23,26,96)(7,16,27,89)(8,21,28,94)(9,14,29,87)(10,19,30,92)(11,24,31,85)(12,17,32,90)(37,55,79,66)(38,60,80,71)(39,53,81,64)(40,58,82,69)(41,51,83,62)(42,56,84,67)(43,49,73,72)(44,54,74,65)(45,59,75,70)(46,52,76,63)(47,57,77,68)(48,50,78,61) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,86),(14,87),(15,88),(16,89),(17,90),(18,91),(19,92),(20,93),(21,94),(22,95),(23,96),(24,85),(37,79),(38,80),(39,81),(40,82),(41,83),(42,84),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,72),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(57,68),(58,69),(59,70),(60,71)], [(1,30,7,36),(2,31,8,25),(3,32,9,26),(4,33,10,27),(5,34,11,28),(6,35,12,29),(13,89,19,95),(14,90,20,96),(15,91,21,85),(16,92,22,86),(17,93,23,87),(18,94,24,88),(37,46,43,40),(38,47,44,41),(39,48,45,42),(49,52,55,58),(50,53,56,59),(51,54,57,60),(61,64,67,70),(62,65,68,71),(63,66,69,72),(73,82,79,76),(74,83,80,77),(75,84,81,78)], [(1,42,7,48),(2,79,8,73),(3,44,9,38),(4,81,10,75),(5,46,11,40),(6,83,12,77),(13,61,19,67),(14,57,20,51),(15,63,21,69),(16,59,22,53),(17,65,23,71),(18,49,24,55),(25,76,31,82),(26,41,32,47),(27,78,33,84),(28,43,34,37),(29,80,35,74),(30,45,36,39),(50,92,56,86),(52,94,58,88),(54,96,60,90),(62,87,68,93),(64,89,70,95),(66,91,72,85)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,22,33,95),(2,15,34,88),(3,20,35,93),(4,13,36,86),(5,18,25,91),(6,23,26,96),(7,16,27,89),(8,21,28,94),(9,14,29,87),(10,19,30,92),(11,24,31,85),(12,17,32,90),(37,55,79,66),(38,60,80,71),(39,53,81,64),(40,58,82,69),(41,51,83,62),(42,56,84,67),(43,49,73,72),(44,54,74,65),(45,59,75,70),(46,52,76,63),(47,57,77,68),(48,50,78,61)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F12G12H
order12222344444444446666688881212121212121212
size11114222228812121212222441212121244448888

33 irreducible representations

dim111111122222222224444
type+++++++++++++--
imageC1C2C2C2C2C2C2S3D4D4D6D6D6C4oD4C3:D4C3:D4C4oD8C8.C22D4:2S3Q8.11D6Q8.13D6
kernel(C2xQ8).51D6C6.Q16C12.Q8C12.55D4Q8:2Dic3C23.26D6C3xC22:Q8C22:Q8C2xC12C22xC6C4:C4C22xC4C2xQ8C12C2xC4C23C6C6C4C2C2
# reps111121111111142241222

Matrix representation of (C2xQ8).51D6 in GL6(F73)

7200000
0720000
0072000
0007200
000010
000001
,
100000
010000
0046000
00322700
0000720
0000072
,
17710000
71560000
0012200
00376100
00003013
00006043
,
7200000
5610000
0027000
0002700
000001
0000721
,
4600000
0460000
00454400
00172800
0000602
00006213

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,32,0,0,0,0,0,27,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[17,71,0,0,0,0,71,56,0,0,0,0,0,0,12,37,0,0,0,0,2,61,0,0,0,0,0,0,30,60,0,0,0,0,13,43],[72,56,0,0,0,0,0,1,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,72,0,0,0,0,1,1],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,45,17,0,0,0,0,44,28,0,0,0,0,0,0,60,62,0,0,0,0,2,13] >;

(C2xQ8).51D6 in GAP, Magma, Sage, TeX

(C_2\times Q_8)._{51}D_6
% in TeX

G:=Group("(C2xQ8).51D6");
// GroupNames label

G:=SmallGroup(192,604);
// by ID

G=gap.SmallGroup(192,604);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,232,254,219,184,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=1,c^2=d^6=b^2,e^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a*b^2*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<