Copied to
clipboard

G = D6.5D8order 192 = 26·3

2nd non-split extension by D6 of D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.5D8, C2.D82S3, D6⋊C815C2, C4⋊C4.47D6, C6.29(C2×D8), (C2×C8).27D6, C2.13(S3×D8), C12⋊D4.7C2, C6.Q1621C2, C6.D820C2, C2.D2414C2, C4.80(C4○D12), C12.37(C4○D4), (C2×Dic3).48D4, (C22×S3).85D4, C22.228(S3×D4), C33(C22.D8), (C2×C24).169C22, (C2×C12).298C23, C4.28(Q83S3), C2.22(Q16⋊S3), (C2×D12).81C22, C6.70(C8.C22), C2.15(D6.D4), C4⋊Dic3.124C22, C6.45(C22.D4), (S3×C4⋊C4)⋊7C2, (C3×C2.D8)⋊11C2, (C2×C6).303(C2×D4), (C2×C3⋊C8).69C22, (S3×C2×C4).38C22, (C3×C4⋊C4).91C22, (C2×C4).401(C22×S3), SmallGroup(192,441)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6.5D8
C1C3C6C2×C6C2×C12S3×C2×C4S3×C4⋊C4 — D6.5D8
C3C6C2×C12 — D6.5D8
C1C22C2×C4C2.D8

Generators and relations for D6.5D8
 G = < a,b,c,d | a6=b2=c8=1, d2=a3, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=c-1 >

Subgroups: 400 in 114 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22⋊C8, D4⋊C4, C2.D8, C2.D8, C2×C4⋊C4, C4⋊D4, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, C22.D8, C6.Q16, C6.D8, D6⋊C8, C2.D24, C3×C2.D8, S3×C4⋊C4, C12⋊D4, D6.5D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, C22×S3, C22.D4, C2×D8, C8.C22, C4○D12, S3×D4, Q83S3, C22.D8, D6.D4, S3×D8, Q16⋊S3, D6.5D8

Smallest permutation representation of D6.5D8
On 96 points
Generators in S96
(1 21 45 77 49 82)(2 22 46 78 50 83)(3 23 47 79 51 84)(4 24 48 80 52 85)(5 17 41 73 53 86)(6 18 42 74 54 87)(7 19 43 75 55 88)(8 20 44 76 56 81)(9 26 71 57 95 35)(10 27 72 58 96 36)(11 28 65 59 89 37)(12 29 66 60 90 38)(13 30 67 61 91 39)(14 31 68 62 92 40)(15 32 69 63 93 33)(16 25 70 64 94 34)
(1 25)(2 95)(3 27)(4 89)(5 29)(6 91)(7 31)(8 93)(9 50)(10 23)(11 52)(12 17)(13 54)(14 19)(15 56)(16 21)(18 61)(20 63)(22 57)(24 59)(26 78)(28 80)(30 74)(32 76)(33 81)(34 45)(35 83)(36 47)(37 85)(38 41)(39 87)(40 43)(42 67)(44 69)(46 71)(48 65)(49 64)(51 58)(53 60)(55 62)(66 86)(68 88)(70 82)(72 84)(73 90)(75 92)(77 94)(79 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 36 77 72)(2 35 78 71)(3 34 79 70)(4 33 80 69)(5 40 73 68)(6 39 74 67)(7 38 75 66)(8 37 76 65)(9 50 57 22)(10 49 58 21)(11 56 59 20)(12 55 60 19)(13 54 61 18)(14 53 62 17)(15 52 63 24)(16 51 64 23)(25 84 94 47)(26 83 95 46)(27 82 96 45)(28 81 89 44)(29 88 90 43)(30 87 91 42)(31 86 92 41)(32 85 93 48)

G:=sub<Sym(96)| (1,21,45,77,49,82)(2,22,46,78,50,83)(3,23,47,79,51,84)(4,24,48,80,52,85)(5,17,41,73,53,86)(6,18,42,74,54,87)(7,19,43,75,55,88)(8,20,44,76,56,81)(9,26,71,57,95,35)(10,27,72,58,96,36)(11,28,65,59,89,37)(12,29,66,60,90,38)(13,30,67,61,91,39)(14,31,68,62,92,40)(15,32,69,63,93,33)(16,25,70,64,94,34), (1,25)(2,95)(3,27)(4,89)(5,29)(6,91)(7,31)(8,93)(9,50)(10,23)(11,52)(12,17)(13,54)(14,19)(15,56)(16,21)(18,61)(20,63)(22,57)(24,59)(26,78)(28,80)(30,74)(32,76)(33,81)(34,45)(35,83)(36,47)(37,85)(38,41)(39,87)(40,43)(42,67)(44,69)(46,71)(48,65)(49,64)(51,58)(53,60)(55,62)(66,86)(68,88)(70,82)(72,84)(73,90)(75,92)(77,94)(79,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,36,77,72)(2,35,78,71)(3,34,79,70)(4,33,80,69)(5,40,73,68)(6,39,74,67)(7,38,75,66)(8,37,76,65)(9,50,57,22)(10,49,58,21)(11,56,59,20)(12,55,60,19)(13,54,61,18)(14,53,62,17)(15,52,63,24)(16,51,64,23)(25,84,94,47)(26,83,95,46)(27,82,96,45)(28,81,89,44)(29,88,90,43)(30,87,91,42)(31,86,92,41)(32,85,93,48)>;

G:=Group( (1,21,45,77,49,82)(2,22,46,78,50,83)(3,23,47,79,51,84)(4,24,48,80,52,85)(5,17,41,73,53,86)(6,18,42,74,54,87)(7,19,43,75,55,88)(8,20,44,76,56,81)(9,26,71,57,95,35)(10,27,72,58,96,36)(11,28,65,59,89,37)(12,29,66,60,90,38)(13,30,67,61,91,39)(14,31,68,62,92,40)(15,32,69,63,93,33)(16,25,70,64,94,34), (1,25)(2,95)(3,27)(4,89)(5,29)(6,91)(7,31)(8,93)(9,50)(10,23)(11,52)(12,17)(13,54)(14,19)(15,56)(16,21)(18,61)(20,63)(22,57)(24,59)(26,78)(28,80)(30,74)(32,76)(33,81)(34,45)(35,83)(36,47)(37,85)(38,41)(39,87)(40,43)(42,67)(44,69)(46,71)(48,65)(49,64)(51,58)(53,60)(55,62)(66,86)(68,88)(70,82)(72,84)(73,90)(75,92)(77,94)(79,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,36,77,72)(2,35,78,71)(3,34,79,70)(4,33,80,69)(5,40,73,68)(6,39,74,67)(7,38,75,66)(8,37,76,65)(9,50,57,22)(10,49,58,21)(11,56,59,20)(12,55,60,19)(13,54,61,18)(14,53,62,17)(15,52,63,24)(16,51,64,23)(25,84,94,47)(26,83,95,46)(27,82,96,45)(28,81,89,44)(29,88,90,43)(30,87,91,42)(31,86,92,41)(32,85,93,48) );

G=PermutationGroup([[(1,21,45,77,49,82),(2,22,46,78,50,83),(3,23,47,79,51,84),(4,24,48,80,52,85),(5,17,41,73,53,86),(6,18,42,74,54,87),(7,19,43,75,55,88),(8,20,44,76,56,81),(9,26,71,57,95,35),(10,27,72,58,96,36),(11,28,65,59,89,37),(12,29,66,60,90,38),(13,30,67,61,91,39),(14,31,68,62,92,40),(15,32,69,63,93,33),(16,25,70,64,94,34)], [(1,25),(2,95),(3,27),(4,89),(5,29),(6,91),(7,31),(8,93),(9,50),(10,23),(11,52),(12,17),(13,54),(14,19),(15,56),(16,21),(18,61),(20,63),(22,57),(24,59),(26,78),(28,80),(30,74),(32,76),(33,81),(34,45),(35,83),(36,47),(37,85),(38,41),(39,87),(40,43),(42,67),(44,69),(46,71),(48,65),(49,64),(51,58),(53,60),(55,62),(66,86),(68,88),(70,82),(72,84),(73,90),(75,92),(77,94),(79,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,36,77,72),(2,35,78,71),(3,34,79,70),(4,33,80,69),(5,40,73,68),(6,39,74,67),(7,38,75,66),(8,37,76,65),(9,50,57,22),(10,49,58,21),(11,56,59,20),(12,55,60,19),(13,54,61,18),(14,53,62,17),(15,52,63,24),(16,51,64,23),(25,84,94,47),(26,83,95,46),(27,82,96,45),(28,81,89,44),(29,88,90,43),(30,87,91,42),(31,86,92,41),(32,85,93,48)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111166242224481212122224412124488884444

33 irreducible representations

dim111111112222222244444
type++++++++++++++-+++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C4○D4D8C4○D12C8.C22Q83S3S3×D4S3×D8Q16⋊S3
kernelD6.5D8C6.Q16C6.D8D6⋊C8C2.D24C3×C2.D8S3×C4⋊C4C12⋊D4C2.D8C2×Dic3C22×S3C4⋊C4C2×C8C12D6C4C6C4C22C2C2
# reps111111111112144411122

Matrix representation of D6.5D8 in GL4(𝔽73) generated by

1100
72000
0010
0001
,
66700
14700
0010
0001
,
431300
603000
003232
00570
,
71400
596600
007271
0001
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[66,14,0,0,7,7,0,0,0,0,1,0,0,0,0,1],[43,60,0,0,13,30,0,0,0,0,32,57,0,0,32,0],[7,59,0,0,14,66,0,0,0,0,72,0,0,0,71,1] >;

D6.5D8 in GAP, Magma, Sage, TeX

D_6._5D_8
% in TeX

G:=Group("D6.5D8");
// GroupNames label

G:=SmallGroup(192,441);
// by ID

G=gap.SmallGroup(192,441);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,254,219,268,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽