extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×Q16) = C12.14Q16 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.1(C2xQ16) | 192,240 |
C6.2(C2×Q16) = C24⋊8Q8 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.2(C2xQ16) | 192,241 |
C6.3(C2×Q16) = C4×Dic12 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.3(C2xQ16) | 192,257 |
C6.4(C2×Q16) = C12⋊4Q16 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.4(C2xQ16) | 192,258 |
C6.5(C2×Q16) = C23.40D12 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.5(C2xQ16) | 192,281 |
C6.6(C2×Q16) = Dic6.32D4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.6(C2xQ16) | 192,298 |
C6.7(C2×Q16) = C4⋊Dic12 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.7(C2xQ16) | 192,408 |
C6.8(C2×Q16) = Dic6⋊3Q8 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.8(C2xQ16) | 192,409 |
C6.9(C2×Q16) = C2×C2.Dic12 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.9(C2xQ16) | 192,662 |
C6.10(C2×Q16) = C2×C24⋊1C4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.10(C2xQ16) | 192,664 |
C6.11(C2×Q16) = C24.82D4 | φ: C2×Q16/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.11(C2xQ16) | 192,675 |
C6.12(C2×Q16) = Dic3⋊4Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.12(C2xQ16) | 192,349 |
C6.13(C2×Q16) = Dic3.1Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.13(C2xQ16) | 192,351 |
C6.14(C2×Q16) = Q8⋊3Dic6 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.14(C2xQ16) | 192,352 |
C6.15(C2×Q16) = Dic3⋊Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.15(C2xQ16) | 192,354 |
C6.16(C2×Q16) = S3×Q8⋊C4 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xQ16) | 192,360 |
C6.17(C2×Q16) = D6⋊Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xQ16) | 192,368 |
C6.18(C2×Q16) = D6.Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xQ16) | 192,370 |
C6.19(C2×Q16) = D6⋊1Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.19(C2xQ16) | 192,372 |
C6.20(C2×Q16) = Dic3⋊5Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.20(C2xQ16) | 192,432 |
C6.21(C2×Q16) = C24⋊2Q8 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.21(C2xQ16) | 192,433 |
C6.22(C2×Q16) = Dic3.Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.22(C2xQ16) | 192,434 |
C6.23(C2×Q16) = S3×C2.D8 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.23(C2xQ16) | 192,438 |
C6.24(C2×Q16) = D6.2Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.24(C2xQ16) | 192,443 |
C6.25(C2×Q16) = D6⋊2Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.25(C2xQ16) | 192,446 |
C6.26(C2×Q16) = Dic3×Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.26(C2xQ16) | 192,740 |
C6.27(C2×Q16) = Dic3⋊3Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.27(C2xQ16) | 192,741 |
C6.28(C2×Q16) = C24.26D4 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 192 | | C6.28(C2xQ16) | 192,742 |
C6.29(C2×Q16) = D6⋊5Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.29(C2xQ16) | 192,745 |
C6.30(C2×Q16) = D6⋊3Q16 | φ: C2×Q16/Q16 → C2 ⊆ Aut C6 | 96 | | C6.30(C2xQ16) | 192,747 |
C6.31(C2×Q16) = C2×C6.Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.31(C2xQ16) | 192,521 |
C6.32(C2×Q16) = C2×C6.SD16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.32(C2xQ16) | 192,528 |
C6.33(C2×Q16) = C4⋊C4.230D6 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.33(C2xQ16) | 192,529 |
C6.34(C2×Q16) = Q8⋊5Dic6 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.34(C2xQ16) | 192,580 |
C6.35(C2×Q16) = C4×C3⋊Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.35(C2xQ16) | 192,588 |
C6.36(C2×Q16) = C12⋊7Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.36(C2xQ16) | 192,590 |
C6.37(C2×Q16) = (C2×C6).Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.37(C2xQ16) | 192,603 |
C6.38(C2×Q16) = Dic6.37D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.38(C2xQ16) | 192,609 |
C6.39(C2×Q16) = C3⋊C8.29D4 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.39(C2xQ16) | 192,610 |
C6.40(C2×Q16) = C12.17D8 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.40(C2xQ16) | 192,637 |
C6.41(C2×Q16) = C12.9Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.41(C2xQ16) | 192,638 |
C6.42(C2×Q16) = C12⋊Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.42(C2xQ16) | 192,649 |
C6.43(C2×Q16) = Dic6⋊5Q8 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.43(C2xQ16) | 192,650 |
C6.44(C2×Q16) = C12⋊3Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.44(C2xQ16) | 192,651 |
C6.45(C2×Q16) = C12.Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.45(C2xQ16) | 192,652 |
C6.46(C2×Q16) = C2×Q8⋊2Dic3 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 192 | | C6.46(C2xQ16) | 192,783 |
C6.47(C2×Q16) = (C2×C6)⋊8Q16 | φ: C2×Q16/C2×Q8 → C2 ⊆ Aut C6 | 96 | | C6.47(C2xQ16) | 192,787 |
C6.48(C2×Q16) = C6×Q8⋊C4 | central extension (φ=1) | 192 | | C6.48(C2xQ16) | 192,848 |
C6.49(C2×Q16) = C6×C2.D8 | central extension (φ=1) | 192 | | C6.49(C2xQ16) | 192,859 |
C6.50(C2×Q16) = C12×Q16 | central extension (φ=1) | 192 | | C6.50(C2xQ16) | 192,872 |
C6.51(C2×Q16) = C3×C22⋊Q16 | central extension (φ=1) | 96 | | C6.51(C2xQ16) | 192,884 |
C6.52(C2×Q16) = C3×C4⋊2Q16 | central extension (φ=1) | 192 | | C6.52(C2xQ16) | 192,895 |
C6.53(C2×Q16) = C3×C8.18D4 | central extension (φ=1) | 96 | | C6.53(C2xQ16) | 192,900 |
C6.54(C2×Q16) = C3×C4.Q16 | central extension (φ=1) | 192 | | C6.54(C2xQ16) | 192,910 |
C6.55(C2×Q16) = C3×C23.48D4 | central extension (φ=1) | 96 | | C6.55(C2xQ16) | 192,917 |
C6.56(C2×Q16) = C3×C4.SD16 | central extension (φ=1) | 192 | | C6.56(C2xQ16) | 192,920 |
C6.57(C2×Q16) = C3×C4⋊Q16 | central extension (φ=1) | 192 | | C6.57(C2xQ16) | 192,927 |
C6.58(C2×Q16) = C3×C8⋊2Q8 | central extension (φ=1) | 192 | | C6.58(C2xQ16) | 192,933 |