Copied to
clipboard

G = D62Q16order 192 = 26·3

2nd semidirect product of D6 and Q16 acting via Q16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D62Q16, C24.17D4, C8.19D12, C2.D86S3, C4⋊C4.52D6, (C2×C8).232D6, C4.55(C2×D12), C2.15(S3×Q16), C6.25(C2×Q16), C6.29(C4○D8), C12.135(C2×D4), C32(C8.18D4), C4.D12.8C2, (C2×Dic12)⋊16C2, C12.42(C4○D4), C6.SD1621C2, C6.48(C4⋊D4), (C2×C24).84C22, (C22×S3).56D4, C22.233(S3×D4), C2.21(C12⋊D4), C2.14(D83S3), (C2×C12).303C23, C4.11(Q83S3), (C2×Dic3).104D4, (C2×Dic6).91C22, (S3×C2×C8).4C2, (C3×C2.D8)⋊6C2, (C2×C6).308(C2×D4), (C3×C4⋊C4).96C22, (C2×C3⋊C8).236C22, (S3×C2×C4).237C22, (C2×C4).406(C22×S3), SmallGroup(192,446)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D62Q16
C1C3C6C2×C6C2×C12S3×C2×C4S3×C2×C8 — D62Q16
C3C6C2×C12 — D62Q16
C1C22C2×C4C2.D8

Generators and relations for D62Q16
 G = < a,b,c,d | a6=b2=c8=1, d2=c4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >

Subgroups: 320 in 114 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, Q8⋊C4, C2.D8, C22⋊Q8, C22×C8, C2×Q16, S3×C8, Dic12, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C8.18D4, C6.SD16, C3×C2.D8, C4.D12, S3×C2×C8, C2×Dic12, D62Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×Q16, C4○D8, C2×D12, S3×D4, Q83S3, C8.18D4, C12⋊D4, D83S3, S3×Q16, D62Q16

Smallest permutation representation of D62Q16
On 96 points
Generators in S96
(1 31 17 45 82 95)(2 32 18 46 83 96)(3 25 19 47 84 89)(4 26 20 48 85 90)(5 27 21 41 86 91)(6 28 22 42 87 92)(7 29 23 43 88 93)(8 30 24 44 81 94)(9 53 63 73 34 66)(10 54 64 74 35 67)(11 55 57 75 36 68)(12 56 58 76 37 69)(13 49 59 77 38 70)(14 50 60 78 39 71)(15 51 61 79 40 72)(16 52 62 80 33 65)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 89)(8 90)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 88)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 37)(34 38)(35 39)(36 40)(49 53)(50 54)(51 55)(52 56)(65 76)(66 77)(67 78)(68 79)(69 80)(70 73)(71 74)(72 75)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 40 21 36)(18 39 22 35)(19 38 23 34)(20 37 24 33)(25 70 29 66)(26 69 30 65)(27 68 31 72)(28 67 32 71)(41 75 45 79)(42 74 46 78)(43 73 47 77)(44 80 48 76)(49 93 53 89)(50 92 54 96)(51 91 55 95)(52 90 56 94)(57 82 61 86)(58 81 62 85)(59 88 63 84)(60 87 64 83)

G:=sub<Sym(96)| (1,31,17,45,82,95)(2,32,18,46,83,96)(3,25,19,47,84,89)(4,26,20,48,85,90)(5,27,21,41,86,91)(6,28,22,42,87,92)(7,29,23,43,88,93)(8,30,24,44,81,94)(9,53,63,73,34,66)(10,54,64,74,35,67)(11,55,57,75,36,68)(12,56,58,76,37,69)(13,49,59,77,38,70)(14,50,60,78,39,71)(15,51,61,79,40,72)(16,52,62,80,33,65), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,88)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,37)(34,38)(35,39)(36,40)(49,53)(50,54)(51,55)(52,56)(65,76)(66,77)(67,78)(68,79)(69,80)(70,73)(71,74)(72,75), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,40,21,36)(18,39,22,35)(19,38,23,34)(20,37,24,33)(25,70,29,66)(26,69,30,65)(27,68,31,72)(28,67,32,71)(41,75,45,79)(42,74,46,78)(43,73,47,77)(44,80,48,76)(49,93,53,89)(50,92,54,96)(51,91,55,95)(52,90,56,94)(57,82,61,86)(58,81,62,85)(59,88,63,84)(60,87,64,83)>;

G:=Group( (1,31,17,45,82,95)(2,32,18,46,83,96)(3,25,19,47,84,89)(4,26,20,48,85,90)(5,27,21,41,86,91)(6,28,22,42,87,92)(7,29,23,43,88,93)(8,30,24,44,81,94)(9,53,63,73,34,66)(10,54,64,74,35,67)(11,55,57,75,36,68)(12,56,58,76,37,69)(13,49,59,77,38,70)(14,50,60,78,39,71)(15,51,61,79,40,72)(16,52,62,80,33,65), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,88)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,37)(34,38)(35,39)(36,40)(49,53)(50,54)(51,55)(52,56)(65,76)(66,77)(67,78)(68,79)(69,80)(70,73)(71,74)(72,75), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,40,21,36)(18,39,22,35)(19,38,23,34)(20,37,24,33)(25,70,29,66)(26,69,30,65)(27,68,31,72)(28,67,32,71)(41,75,45,79)(42,74,46,78)(43,73,47,77)(44,80,48,76)(49,93,53,89)(50,92,54,96)(51,91,55,95)(52,90,56,94)(57,82,61,86)(58,81,62,85)(59,88,63,84)(60,87,64,83) );

G=PermutationGroup([[(1,31,17,45,82,95),(2,32,18,46,83,96),(3,25,19,47,84,89),(4,26,20,48,85,90),(5,27,21,41,86,91),(6,28,22,42,87,92),(7,29,23,43,88,93),(8,30,24,44,81,94),(9,53,63,73,34,66),(10,54,64,74,35,67),(11,55,57,75,36,68),(12,56,58,76,37,69),(13,49,59,77,38,70),(14,50,60,78,39,71),(15,51,61,79,40,72),(16,52,62,80,33,65)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,89),(8,90),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,88),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,37),(34,38),(35,39),(36,40),(49,53),(50,54),(51,55),(52,56),(65,76),(66,77),(67,78),(68,79),(69,80),(70,73),(71,74),(72,75)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,40,21,36),(18,39,22,35),(19,38,23,34),(20,37,24,33),(25,70,29,66),(26,69,30,65),(27,68,31,72),(28,67,32,71),(41,75,45,79),(42,74,46,78),(43,73,47,77),(44,80,48,76),(49,93,53,89),(50,92,54,96),(51,91,55,95),(52,90,56,94),(57,82,61,86),(58,81,62,85),(59,88,63,84),(60,87,64,83)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223444444446668888888812121212121224242424
size11116622266882424222222266664488884444

36 irreducible representations

dim11111122222222224444
type++++++++++++-+++--
imageC1C2C2C2C2C2S3D4D4D4D6D6C4○D4Q16D12C4○D8Q83S3S3×D4D83S3S3×Q16
kernelD62Q16C6.SD16C3×C2.D8C4.D12S3×C2×C8C2×Dic12C2.D8C24C2×Dic3C22×S3C4⋊C4C2×C8C12D6C8C6C4C22C2C2
# reps12121112112124441122

Matrix representation of D62Q16 in GL4(𝔽73) generated by

72000
07200
0001
00721
,
1000
07200
00721
0001
,
51000
06300
0010
0001
,
0100
72000
00597
006614
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,0,72,0,0,1,1],[1,0,0,0,0,72,0,0,0,0,72,0,0,0,1,1],[51,0,0,0,0,63,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,1,0,0,0,0,0,59,66,0,0,7,14] >;

D62Q16 in GAP, Magma, Sage, TeX

D_6\rtimes_2Q_{16}
% in TeX

G:=Group("D6:2Q16");
// GroupNames label

G:=SmallGroup(192,446);
// by ID

G=gap.SmallGroup(192,446);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,226,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=c^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽