Extensions 1→N→G→Q→1 with N=C3×C2.D8 and Q=C2

Direct product G=N×Q with N=C3×C2.D8 and Q=C2
dρLabelID
C6×C2.D8192C6xC2.D8192,859

Semidirect products G=N:Q with N=C3×C2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C2.D8)⋊1C2 = C6.D16φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):1C2192,50
(C3×C2.D8)⋊2C2 = Dic35D8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):2C2192,431
(C3×C2.D8)⋊3C2 = S3×C2.D8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):3C2192,438
(C3×C2.D8)⋊4C2 = C8.27(C4×S3)φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):4C2192,439
(C3×C2.D8)⋊5C2 = D62D8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):5C2192,442
(C3×C2.D8)⋊6C2 = D62Q16φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):6C2192,446
(C3×C2.D8)⋊7C2 = C8⋊S3⋊C4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):7C2192,440
(C3×C2.D8)⋊8C2 = C83D12φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):8C2192,445
(C3×C2.D8)⋊9C2 = C24⋊C2⋊C4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):9C2192,448
(C3×C2.D8)⋊10C2 = C3×C2.D16φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):10C2192,163
(C3×C2.D8)⋊11C2 = D6.5D8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):11C2192,441
(C3×C2.D8)⋊12C2 = D6.2Q16φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):12C2192,443
(C3×C2.D8)⋊13C2 = C2.D8⋊S3φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):13C2192,444
(C3×C2.D8)⋊14C2 = C2.D87S3φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):14C2192,447
(C3×C2.D8)⋊15C2 = D122Q8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):15C2192,449
(C3×C2.D8)⋊16C2 = D12.2Q8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):16C2192,450
(C3×C2.D8)⋊17C2 = C3×C87D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):17C2192,899
(C3×C2.D8)⋊18C2 = C3×C8.18D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):18C2192,900
(C3×C2.D8)⋊19C2 = C3×D4⋊Q8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):19C2192,907
(C3×C2.D8)⋊20C2 = C3×D4.Q8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):20C2192,911
(C3×C2.D8)⋊21C2 = C3×C22.D8φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):21C2192,913
(C3×C2.D8)⋊22C2 = C3×C23.19D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):22C2192,915
(C3×C2.D8)⋊23C2 = C3×C23.48D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):23C2192,917
(C3×C2.D8)⋊24C2 = C3×C23.20D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):24C2192,918
(C3×C2.D8)⋊25C2 = C3×M4(2)⋊C4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):25C2192,861
(C3×C2.D8)⋊26C2 = C3×SD16⋊C4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):26C2192,873
(C3×C2.D8)⋊27C2 = C3×C8⋊D4φ: C2/C1C2 ⊆ Out C3×C2.D896(C3xC2.D8):27C2192,901
(C3×C2.D8)⋊28C2 = C3×C23.25D4φ: trivial image96(C3xC2.D8):28C2192,860
(C3×C2.D8)⋊29C2 = C12×D8φ: trivial image96(C3xC2.D8):29C2192,870

Non-split extensions G=N.Q with N=C3×C2.D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C2.D8).1C2 = C6.6D16φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).1C2192,48
(C3×C2.D8).2C2 = C6.SD32φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).2C2192,49
(C3×C2.D8).3C2 = C6.Q32φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).3C2192,51
(C3×C2.D8).4C2 = Dic35Q16φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).4C2192,432
(C3×C2.D8).5C2 = C242Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).5C2192,433
(C3×C2.D8).6C2 = C8.6Dic6φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).6C2192,437
(C3×C2.D8).7C2 = C244Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).7C2192,435
(C3×C2.D8).8C2 = C3×C2.Q32φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).8C2192,164
(C3×C2.D8).9C2 = C3×C163C4φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).9C2192,172
(C3×C2.D8).10C2 = C3×C164C4φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).10C2192,173
(C3×C2.D8).11C2 = Dic3.Q16φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).11C2192,434
(C3×C2.D8).12C2 = Dic6.2Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).12C2192,436
(C3×C2.D8).13C2 = C3×C4.Q16φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).13C2192,910
(C3×C2.D8).14C2 = C3×Q8.Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).14C2192,912
(C3×C2.D8).15C2 = C3×C8.5Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).15C2192,932
(C3×C2.D8).16C2 = C3×C82Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).16C2192,933
(C3×C2.D8).17C2 = C3×C8⋊Q8φ: C2/C1C2 ⊆ Out C3×C2.D8192(C3xC2.D8).17C2192,934
(C3×C2.D8).18C2 = C12×Q16φ: trivial image192(C3xC2.D8).18C2192,872

׿
×
𝔽