Copied to
clipboard

G = C83D12order 192 = 26·3

3rd semidirect product of C8 and D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C83D12, C2410D4, C33(C8⋊D4), C4⋊C4.51D6, (C2×C8).66D6, C2.D811S3, C4.D127C2, C4.54(C2×D12), C12⋊D4.9C2, C6.D823C2, C12.134(C2×D4), C12.41(C4○D4), C6.SD1620C2, C2.24(D8⋊S3), C6.47(C4⋊D4), C6.43(C8⋊C22), (C2×Dic3).50D4, (C22×S3).29D4, C22.232(S3×D4), C2.20(C12⋊D4), (C2×C12).302C23, (C2×C24).144C22, C4.10(Q83S3), C2.23(Q16⋊S3), (C2×D12).84C22, C6.71(C8.C22), (C2×Dic6).90C22, (C3×C2.D8)⋊8C2, (C2×C8⋊S3)⋊6C2, (C2×C24⋊C2)⋊22C2, (C2×C6).307(C2×D4), (C2×C3⋊C8).72C22, (S3×C2×C4).41C22, (C3×C4⋊C4).95C22, (C2×C4).405(C22×S3), SmallGroup(192,445)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C83D12
C1C3C6C2×C6C2×C12S3×C2×C4C2×C8⋊S3 — C83D12
C3C6C2×C12 — C83D12
C1C22C2×C4C2.D8

Generators and relations for C83D12
 G = < a,b,c | a8=b12=c2=1, bab-1=a-1, cac=a3, cbc=b-1 >

Subgroups: 416 in 120 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C8⋊S3, C24⋊C2, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C2×D12, C8⋊D4, C6.D8, C6.SD16, C3×C2.D8, C12⋊D4, C4.D12, C2×C8⋊S3, C2×C24⋊C2, C83D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C8⋊C22, C8.C22, C2×D12, S3×D4, Q83S3, C8⋊D4, C12⋊D4, D8⋊S3, Q16⋊S3, C83D12

Character table of C83D12

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111112242228812242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ211111-1111-1111111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ31111-11111-1-1-1111111-1-111-1-1-1-11111    linear of order 2
ρ41111-1-11111-1-11111-1-11111-1-111-1-1-1-1    linear of order 2
ρ51111-11111-11-1-1111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ61111-1-111111-1-111111-1-11111111111    linear of order 2
ρ71111111111-11-1111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ811111-1111-1-11-1111111111-1-1-1-11111    linear of order 2
ρ922-2-2002-220000-2-222-2002-200002-2-22    orthogonal lifted from D4
ρ10222200-1222-200-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ11222200-1222200-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122222202-2-200-202220000-2-200000000    orthogonal lifted from D4
ρ132222-202-2-200202220000-2-200000000    orthogonal lifted from D4
ρ1422-2-2002-220000-2-22-22002-20000-222-2    orthogonal lifted from D4
ρ15222200-122-2-200-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ16222200-122-2200-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ1722-2-200-1-22000011-1-2200-11-33-331-1-11    orthogonal lifted from D12
ρ1822-2-200-1-22000011-1-2200-113-33-31-1-11    orthogonal lifted from D12
ρ1922-2-200-1-22000011-12-200-113-3-33-111-1    orthogonal lifted from D12
ρ2022-2-200-1-22000011-12-200-11-333-3-111-1    orthogonal lifted from D12
ρ2122-2-20022-20000-2-2200-2i2i-2200000000    complex lifted from C4○D4
ρ2222-2-20022-20000-2-22002i-2i-2200000000    complex lifted from C4○D4
ρ23444400-2-4-40000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ244-44-40040000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ2544-4-400-24-4000022-200002-200000000    orthogonal lifted from Q83S3, Schur index 2
ρ264-4-44004000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ274-4-4400-20000002-220000000000-6--6-6--6    complex lifted from Q16⋊S3
ρ284-44-400-2000000-2220000000000-6-6--6--6    complex lifted from D8⋊S3
ρ294-4-4400-20000002-220000000000--6-6--6-6    complex lifted from Q16⋊S3
ρ304-44-400-2000000-2220000000000--6--6-6-6    complex lifted from D8⋊S3

Smallest permutation representation of C83D12
On 96 points
Generators in S96
(1 56 39 86 69 83 14 27)(2 28 15 84 70 87 40 57)(3 58 41 88 71 73 16 29)(4 30 17 74 72 89 42 59)(5 60 43 90 61 75 18 31)(6 32 19 76 62 91 44 49)(7 50 45 92 63 77 20 33)(8 34 21 78 64 93 46 51)(9 52 47 94 65 79 22 35)(10 36 23 80 66 95 48 53)(11 54 37 96 67 81 24 25)(12 26 13 82 68 85 38 55)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 42)(14 41)(15 40)(16 39)(17 38)(18 37)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 75)(26 74)(27 73)(28 84)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(49 95)(50 94)(51 93)(52 92)(53 91)(54 90)(55 89)(56 88)(57 87)(58 86)(59 85)(60 96)(61 67)(62 66)(63 65)(68 72)(69 71)

G:=sub<Sym(96)| (1,56,39,86,69,83,14,27)(2,28,15,84,70,87,40,57)(3,58,41,88,71,73,16,29)(4,30,17,74,72,89,42,59)(5,60,43,90,61,75,18,31)(6,32,19,76,62,91,44,49)(7,50,45,92,63,77,20,33)(8,34,21,78,64,93,46,51)(9,52,47,94,65,79,22,35)(10,36,23,80,66,95,48,53)(11,54,37,96,67,81,24,25)(12,26,13,82,68,85,38,55), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,96)(61,67)(62,66)(63,65)(68,72)(69,71)>;

G:=Group( (1,56,39,86,69,83,14,27)(2,28,15,84,70,87,40,57)(3,58,41,88,71,73,16,29)(4,30,17,74,72,89,42,59)(5,60,43,90,61,75,18,31)(6,32,19,76,62,91,44,49)(7,50,45,92,63,77,20,33)(8,34,21,78,64,93,46,51)(9,52,47,94,65,79,22,35)(10,36,23,80,66,95,48,53)(11,54,37,96,67,81,24,25)(12,26,13,82,68,85,38,55), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,96)(61,67)(62,66)(63,65)(68,72)(69,71) );

G=PermutationGroup([[(1,56,39,86,69,83,14,27),(2,28,15,84,70,87,40,57),(3,58,41,88,71,73,16,29),(4,30,17,74,72,89,42,59),(5,60,43,90,61,75,18,31),(6,32,19,76,62,91,44,49),(7,50,45,92,63,77,20,33),(8,34,21,78,64,93,46,51),(9,52,47,94,65,79,22,35),(10,36,23,80,66,95,48,53),(11,54,37,96,67,81,24,25),(12,26,13,82,68,85,38,55)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,42),(14,41),(15,40),(16,39),(17,38),(18,37),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,75),(26,74),(27,73),(28,84),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(49,95),(50,94),(51,93),(52,92),(53,91),(54,90),(55,89),(56,88),(57,87),(58,86),(59,85),(60,96),(61,67),(62,66),(63,65),(68,72),(69,71)]])

Matrix representation of C83D12 in GL6(𝔽73)

7200000
0720000
0042222020
003111020
00621100
0042112020
,
5230000
23210000
006366030
00713430
00644607
008646610
,
7200000
5910000
0017200
0007200
00242311
002524072

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,42,31,62,42,0,0,22,11,11,11,0,0,20,0,0,20,0,0,20,20,0,20],[52,23,0,0,0,0,3,21,0,0,0,0,0,0,63,7,64,8,0,0,66,13,4,64,0,0,0,43,60,66,0,0,30,0,7,10],[72,59,0,0,0,0,0,1,0,0,0,0,0,0,1,0,24,25,0,0,72,72,23,24,0,0,0,0,1,0,0,0,0,0,1,72] >;

C83D12 in GAP, Magma, Sage, TeX

C_8\rtimes_3D_{12}
% in TeX

G:=Group("C8:3D12");
// GroupNames label

G:=SmallGroup(192,445);
// by ID

G=gap.SmallGroup(192,445);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,120,254,219,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,b*a*b^-1=a^-1,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

Export

Character table of C83D12 in TeX

׿
×
𝔽