Copied to
clipboard

G = D62D8order 192 = 26·3

2nd semidirect product of D6 and D8 acting via D8/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D62D8, C244D4, C87D12, C2.D83S3, C32(C87D4), C4⋊C4.48D6, C6.30(C2×D8), C2.14(S3×D8), (C2×D24)⋊16C2, C12⋊D47C2, C4.53(C2×D12), (C2×C8).231D6, C6.75(C4○D8), C12.133(C2×D4), C6.D821C2, C12.38(C4○D4), C6.46(C4⋊D4), (C2×C24).83C22, C4.9(Q83S3), (C22×S3).55D4, C22.229(S3×D4), C2.19(C12⋊D4), (C2×C12).299C23, (C2×Dic3).103D4, (C2×D12).82C22, C2.13(D24⋊C2), (S3×C2×C8)⋊2C2, (C3×C2.D8)⋊5C2, (C2×C6).304(C2×D4), (C3×C4⋊C4).92C22, (C2×C3⋊C8).235C22, (S3×C2×C4).236C22, (C2×C4).402(C22×S3), SmallGroup(192,442)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D62D8
C1C3C6C2×C6C2×C12S3×C2×C4S3×C2×C8 — D62D8
C3C6C2×C12 — D62D8
C1C22C2×C4C2.D8

Generators and relations for D62D8
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=dad=a-1, ac=ca, bc=cb, dbd=ab, dcd=c-1 >

Subgroups: 512 in 134 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, S3×C8, D24, C2×C3⋊C8, D6⋊C4, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×D12, C87D4, C6.D8, C3×C2.D8, C12⋊D4, S3×C2×C8, C2×D24, D62D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×D8, C4○D8, C2×D12, S3×D4, Q83S3, C87D4, C12⋊D4, S3×D8, D24⋊C2, D62D8

Smallest permutation representation of D62D8
On 96 points
Generators in S96
(1 31 71 45 82 95)(2 32 72 46 83 96)(3 25 65 47 84 89)(4 26 66 48 85 90)(5 27 67 41 86 91)(6 28 68 42 87 92)(7 29 69 43 88 93)(8 30 70 44 81 94)(9 61 40 20 77 52)(10 62 33 21 78 53)(11 63 34 22 79 54)(12 64 35 23 80 55)(13 57 36 24 73 56)(14 58 37 17 74 49)(15 59 38 18 75 50)(16 60 39 19 76 51)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)(17 83)(18 84)(19 85)(20 86)(21 87)(22 88)(23 81)(24 82)(33 92)(34 93)(35 94)(36 95)(37 96)(38 89)(39 90)(40 91)(41 77)(42 78)(43 79)(44 80)(45 73)(46 74)(47 75)(48 76)(49 72)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 4)(2 3)(5 8)(6 7)(9 64)(10 63)(11 62)(12 61)(13 60)(14 59)(15 58)(16 57)(17 75)(18 74)(19 73)(20 80)(21 79)(22 78)(23 77)(24 76)(25 96)(26 95)(27 94)(28 93)(29 92)(30 91)(31 90)(32 89)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 56)(40 55)(41 44)(42 43)(45 48)(46 47)(65 83)(66 82)(67 81)(68 88)(69 87)(70 86)(71 85)(72 84)

G:=sub<Sym(96)| (1,31,71,45,82,95)(2,32,72,46,83,96)(3,25,65,47,84,89)(4,26,66,48,85,90)(5,27,67,41,86,91)(6,28,68,42,87,92)(7,29,69,43,88,93)(8,30,70,44,81,94)(9,61,40,20,77,52)(10,62,33,21,78,53)(11,63,34,22,79,54)(12,64,35,23,80,55)(13,57,36,24,73,56)(14,58,37,17,74,49)(15,59,38,18,75,50)(16,60,39,19,76,51), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,81)(24,82)(33,92)(34,93)(35,94)(36,95)(37,96)(38,89)(39,90)(40,91)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,4)(2,3)(5,8)(6,7)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,75)(18,74)(19,73)(20,80)(21,79)(22,78)(23,77)(24,76)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,56)(40,55)(41,44)(42,43)(45,48)(46,47)(65,83)(66,82)(67,81)(68,88)(69,87)(70,86)(71,85)(72,84)>;

G:=Group( (1,31,71,45,82,95)(2,32,72,46,83,96)(3,25,65,47,84,89)(4,26,66,48,85,90)(5,27,67,41,86,91)(6,28,68,42,87,92)(7,29,69,43,88,93)(8,30,70,44,81,94)(9,61,40,20,77,52)(10,62,33,21,78,53)(11,63,34,22,79,54)(12,64,35,23,80,55)(13,57,36,24,73,56)(14,58,37,17,74,49)(15,59,38,18,75,50)(16,60,39,19,76,51), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26)(17,83)(18,84)(19,85)(20,86)(21,87)(22,88)(23,81)(24,82)(33,92)(34,93)(35,94)(36,95)(37,96)(38,89)(39,90)(40,91)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76)(49,72)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,4)(2,3)(5,8)(6,7)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,75)(18,74)(19,73)(20,80)(21,79)(22,78)(23,77)(24,76)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,56)(40,55)(41,44)(42,43)(45,48)(46,47)(65,83)(66,82)(67,81)(68,88)(69,87)(70,86)(71,85)(72,84) );

G=PermutationGroup([[(1,31,71,45,82,95),(2,32,72,46,83,96),(3,25,65,47,84,89),(4,26,66,48,85,90),(5,27,67,41,86,91),(6,28,68,42,87,92),(7,29,69,43,88,93),(8,30,70,44,81,94),(9,61,40,20,77,52),(10,62,33,21,78,53),(11,63,34,22,79,54),(12,64,35,23,80,55),(13,57,36,24,73,56),(14,58,37,17,74,49),(15,59,38,18,75,50),(16,60,39,19,76,51)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26),(17,83),(18,84),(19,85),(20,86),(21,87),(22,88),(23,81),(24,82),(33,92),(34,93),(35,94),(36,95),(37,96),(38,89),(39,90),(40,91),(41,77),(42,78),(43,79),(44,80),(45,73),(46,74),(47,75),(48,76),(49,72),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,4),(2,3),(5,8),(6,7),(9,64),(10,63),(11,62),(12,61),(13,60),(14,59),(15,58),(16,57),(17,75),(18,74),(19,73),(20,80),(21,79),(22,78),(23,77),(24,76),(25,96),(26,95),(27,94),(28,93),(29,92),(30,91),(31,90),(32,89),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,56),(40,55),(41,44),(42,43),(45,48),(46,47),(65,83),(66,82),(67,81),(68,88),(69,87),(70,86),(71,85),(72,84)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222222234444446668888888812121212121224242424
size11116624242226688222222266664488884444

36 irreducible representations

dim11111122222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6C4○D4D8D12C4○D8Q83S3S3×D4S3×D8D24⋊C2
kernelD62D8C6.D8C3×C2.D8C12⋊D4S3×C2×C8C2×D24C2.D8C24C2×Dic3C22×S3C4⋊C4C2×C8C12D6C8C6C4C22C2C2
# reps12121112112124441122

Matrix representation of D62D8 in GL4(𝔽73) generated by

1100
72000
00720
00072
,
76600
596600
00278
005546
,
1000
0100
004125
00350
,
1000
727200
003248
003841
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,72,0,0,0,0,72],[7,59,0,0,66,66,0,0,0,0,27,55,0,0,8,46],[1,0,0,0,0,1,0,0,0,0,41,35,0,0,25,0],[1,72,0,0,0,72,0,0,0,0,32,38,0,0,48,41] >;

D62D8 in GAP, Magma, Sage, TeX

D_6\rtimes_2D_8
% in TeX

G:=Group("D6:2D8");
// GroupNames label

G:=SmallGroup(192,442);
// by ID

G=gap.SmallGroup(192,442);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽