Extensions 1→N→G→Q→1 with N=C3xC4:D4 and Q=C2

Direct product G=NxQ with N=C3xC4:D4 and Q=C2
dρLabelID
C6xC4:D496C6xC4:D4192,1411

Semidirect products G=N:Q with N=C3xC4:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4:D4):1C2 = D12:16D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):1C2192,595
(C3xC4:D4):2C2 = D12:17D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):2C2192,596
(C3xC4:D4):3C2 = C3:C8:22D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):3C2192,597
(C3xC4:D4):4C2 = C4:D4:S3φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):4C2192,598
(C3xC4:D4):5C2 = C12:(C4oD4)φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):5C2192,1155
(C3xC4:D4):6C2 = C6.322+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):6C2192,1156
(C3xC4:D4):7C2 = Dic6:19D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):7C2192,1157
(C3xC4:D4):8C2 = Dic6:20D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):8C2192,1158
(C3xC4:D4):9C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):9C2192,1160
(C3xC4:D4):10C2 = S3xC4:D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):10C2192,1163
(C3xC4:D4):11C2 = C6.372+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):11C2192,1164
(C3xC4:D4):12C2 = C4:C4:21D6φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):12C2192,1165
(C3xC4:D4):13C2 = C6.382+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):13C2192,1166
(C3xC4:D4):14C2 = C6.722- 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):14C2192,1167
(C3xC4:D4):15C2 = D12:19D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):15C2192,1168
(C3xC4:D4):16C2 = C6.402+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):16C2192,1169
(C3xC4:D4):17C2 = C6.732- 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):17C2192,1170
(C3xC4:D4):18C2 = D12:20D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):18C2192,1171
(C3xC4:D4):19C2 = C6.422+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):19C2192,1172
(C3xC4:D4):20C2 = C6.432+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):20C2192,1173
(C3xC4:D4):21C2 = C6.442+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):21C2192,1174
(C3xC4:D4):22C2 = C6.452+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):22C2192,1175
(C3xC4:D4):23C2 = C6.462+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):23C2192,1176
(C3xC4:D4):24C2 = C6.1152+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):24C2192,1177
(C3xC4:D4):25C2 = C6.472+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):25C2192,1178
(C3xC4:D4):26C2 = C6.482+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):26C2192,1179
(C3xC4:D4):27C2 = C6.492+ 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):27C2192,1180
(C3xC4:D4):28C2 = C3xC22:D8φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):28C2192,880
(C3xC4:D4):29C2 = C3xD4:D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):29C2192,882
(C3xC4:D4):30C2 = C3xC8:7D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):30C2192,899
(C3xC4:D4):31C2 = C3xC8:2D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):31C2192,902
(C3xC4:D4):32C2 = C3xC23:3D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):32C2192,1423
(C3xC4:D4):33C2 = C3xC22.29C24φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):33C2192,1424
(C3xC4:D4):34C2 = C3xC22.31C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):34C2192,1426
(C3xC4:D4):35C2 = C3xC22.32C24φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):35C2192,1427
(C3xC4:D4):36C2 = C3xC22.34C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):36C2192,1429
(C3xC4:D4):37C2 = C3xD42φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):37C2192,1434
(C3xC4:D4):38C2 = C3xD4:5D4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):38C2192,1435
(C3xC4:D4):39C2 = C3xD4:6D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):39C2192,1436
(C3xC4:D4):40C2 = C3xQ8:5D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):40C2192,1437
(C3xC4:D4):41C2 = C3xQ8:6D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):41C2192,1439
(C3xC4:D4):42C2 = C3xC22.47C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):42C2192,1442
(C3xC4:D4):43C2 = C3xC22.49C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):43C2192,1444
(C3xC4:D4):44C2 = C3xC22.54C24φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4):44C2192,1449
(C3xC4:D4):45C2 = C3xC22.56C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4):45C2192,1451
(C3xC4:D4):46C2 = C3xC22.19C24φ: trivial image48(C3xC4:D4):46C2192,1414
(C3xC4:D4):47C2 = C3xC22.26C24φ: trivial image96(C3xC4:D4):47C2192,1421

Non-split extensions G=N.Q with N=C3xC4:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4:D4).1C2 = (C2xC6).D8φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).1C2192,592
(C3xC4:D4).2C2 = C4:D4.S3φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).2C2192,593
(C3xC4:D4).3C2 = C6.Q16:C2φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).3C2192,594
(C3xC4:D4).4C2 = Dic6:17D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).4C2192,599
(C3xC4:D4).5C2 = C3:C8:23D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).5C2192,600
(C3xC4:D4).6C2 = C3:C8:5D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).6C2192,601
(C3xC4:D4).7C2 = C4:C4.178D6φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).7C2192,1159
(C3xC4:D4).8C2 = C6.702- 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).8C2192,1161
(C3xC4:D4).9C2 = C6.712- 1+4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).9C2192,1162
(C3xC4:D4).10C2 = (C6xD4):C4φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4).10C2192,96
(C3xC4:D4).11C2 = C3xC22.SD16φ: C2/C1C2 ⊆ Out C3xC4:D448(C3xC4:D4).11C2192,133
(C3xC4:D4).12C2 = C3xQ8:D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).12C2192,881
(C3xC4:D4).13C2 = C3xC8:8D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).13C2192,898
(C3xC4:D4).14C2 = C3xC8:D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).14C2192,901
(C3xC4:D4).15C2 = C3xC22.D8φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).15C2192,913
(C3xC4:D4).16C2 = C3xC23.46D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).16C2192,914
(C3xC4:D4).17C2 = C3xC23.19D4φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).17C2192,915
(C3xC4:D4).18C2 = C3xC22.33C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).18C2192,1428
(C3xC4:D4).19C2 = C3xC22.36C24φ: C2/C1C2 ⊆ Out C3xC4:D496(C3xC4:D4).19C2192,1431
(C3xC4:D4).20C2 = C3xC23.36C23φ: trivial image96(C3xC4:D4).20C2192,1418

׿
x
:
Z
F
o
wr
Q
<