Copied to
clipboard

## G = C6.472+ 1+4order 192 = 26·3

### 47th non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C6 — C6.472+ 1+4
 Chief series C1 — C3 — C6 — C2×C6 — C22×S3 — S3×C2×C4 — C23.9D6 — C6.472+ 1+4
 Lower central C3 — C2×C6 — C6.472+ 1+4
 Upper central C1 — C22 — C4⋊D4

Generators and relations for C6.472+ 1+4
G = < a,b,c,d,e | a6=b4=e2=1, c2=a3, d2=a3b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=a3b-1, dbd-1=a3b, be=eb, dcd-1=ece=a3c, ede=a3b2d >

Subgroups: 656 in 240 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22.D4, C42.C2, C41D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, C22.34C24, C23.9D6, C23.21D6, C4.Dic6, Dic35D4, C23.26D6, C127D4, D4×Dic3, D63D4, C23.14D6, C123D4, C3×C4⋊D4, C6.472+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, D42S3, S3×C23, C22.34C24, C2×D42S3, D46D6, D4○D12, C6.472+ 1+4

Smallest permutation representation of C6.472+ 1+4
On 96 points
Generators in S96
```(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 82 10 73)(2 83 11 74)(3 84 12 75)(4 79 7 76)(5 80 8 77)(6 81 9 78)(13 94 22 85)(14 95 23 86)(15 96 24 87)(16 91 19 88)(17 92 20 89)(18 93 21 90)(25 58 34 49)(26 59 35 50)(27 60 36 51)(28 55 31 52)(29 56 32 53)(30 57 33 54)(37 70 46 61)(38 71 47 62)(39 72 48 63)(40 67 43 64)(41 68 44 65)(42 69 45 66)
(1 52 4 49)(2 53 5 50)(3 54 6 51)(7 58 10 55)(8 59 11 56)(9 60 12 57)(13 64 16 61)(14 65 17 62)(15 66 18 63)(19 70 22 67)(20 71 23 68)(21 72 24 69)(25 76 28 73)(26 77 29 74)(27 78 30 75)(31 82 34 79)(32 83 35 80)(33 84 36 81)(37 88 40 85)(38 89 41 86)(39 90 42 87)(43 94 46 91)(44 95 47 92)(45 96 48 93)
(1 19 7 13)(2 24 8 18)(3 23 9 17)(4 22 10 16)(5 21 11 15)(6 20 12 14)(25 43 31 37)(26 48 32 42)(27 47 33 41)(28 46 34 40)(29 45 35 39)(30 44 36 38)(49 70 55 64)(50 69 56 63)(51 68 57 62)(52 67 58 61)(53 72 59 66)(54 71 60 65)(73 94 79 88)(74 93 80 87)(75 92 81 86)(76 91 82 85)(77 96 83 90)(78 95 84 89)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)(49 64)(50 65)(51 66)(52 61)(53 62)(54 63)(55 70)(56 71)(57 72)(58 67)(59 68)(60 69)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)```

`G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,82,10,73)(2,83,11,74)(3,84,12,75)(4,79,7,76)(5,80,8,77)(6,81,9,78)(13,94,22,85)(14,95,23,86)(15,96,24,87)(16,91,19,88)(17,92,20,89)(18,93,21,90)(25,58,34,49)(26,59,35,50)(27,60,36,51)(28,55,31,52)(29,56,32,53)(30,57,33,54)(37,70,46,61)(38,71,47,62)(39,72,48,63)(40,67,43,64)(41,68,44,65)(42,69,45,66), (1,52,4,49)(2,53,5,50)(3,54,6,51)(7,58,10,55)(8,59,11,56)(9,60,12,57)(13,64,16,61)(14,65,17,62)(15,66,18,63)(19,70,22,67)(20,71,23,68)(21,72,24,69)(25,76,28,73)(26,77,29,74)(27,78,30,75)(31,82,34,79)(32,83,35,80)(33,84,36,81)(37,88,40,85)(38,89,41,86)(39,90,42,87)(43,94,46,91)(44,95,47,92)(45,96,48,93), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,43,31,37)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38)(49,70,55,64)(50,69,56,63)(51,68,57,62)(52,67,58,61)(53,72,59,66)(54,71,60,65)(73,94,79,88)(74,93,80,87)(75,92,81,86)(76,91,82,85)(77,96,83,90)(78,95,84,89), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45)(49,64)(50,65)(51,66)(52,61)(53,62)(54,63)(55,70)(56,71)(57,72)(58,67)(59,68)(60,69)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)>;`

`G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,82,10,73)(2,83,11,74)(3,84,12,75)(4,79,7,76)(5,80,8,77)(6,81,9,78)(13,94,22,85)(14,95,23,86)(15,96,24,87)(16,91,19,88)(17,92,20,89)(18,93,21,90)(25,58,34,49)(26,59,35,50)(27,60,36,51)(28,55,31,52)(29,56,32,53)(30,57,33,54)(37,70,46,61)(38,71,47,62)(39,72,48,63)(40,67,43,64)(41,68,44,65)(42,69,45,66), (1,52,4,49)(2,53,5,50)(3,54,6,51)(7,58,10,55)(8,59,11,56)(9,60,12,57)(13,64,16,61)(14,65,17,62)(15,66,18,63)(19,70,22,67)(20,71,23,68)(21,72,24,69)(25,76,28,73)(26,77,29,74)(27,78,30,75)(31,82,34,79)(32,83,35,80)(33,84,36,81)(37,88,40,85)(38,89,41,86)(39,90,42,87)(43,94,46,91)(44,95,47,92)(45,96,48,93), (1,19,7,13)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14)(25,43,31,37)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38)(49,70,55,64)(50,69,56,63)(51,68,57,62)(52,67,58,61)(53,72,59,66)(54,71,60,65)(73,94,79,88)(74,93,80,87)(75,92,81,86)(76,91,82,85)(77,96,83,90)(78,95,84,89), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45)(49,64)(50,65)(51,66)(52,61)(53,62)(54,63)(55,70)(56,71)(57,72)(58,67)(59,68)(60,69)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96) );`

`G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,82,10,73),(2,83,11,74),(3,84,12,75),(4,79,7,76),(5,80,8,77),(6,81,9,78),(13,94,22,85),(14,95,23,86),(15,96,24,87),(16,91,19,88),(17,92,20,89),(18,93,21,90),(25,58,34,49),(26,59,35,50),(27,60,36,51),(28,55,31,52),(29,56,32,53),(30,57,33,54),(37,70,46,61),(38,71,47,62),(39,72,48,63),(40,67,43,64),(41,68,44,65),(42,69,45,66)], [(1,52,4,49),(2,53,5,50),(3,54,6,51),(7,58,10,55),(8,59,11,56),(9,60,12,57),(13,64,16,61),(14,65,17,62),(15,66,18,63),(19,70,22,67),(20,71,23,68),(21,72,24,69),(25,76,28,73),(26,77,29,74),(27,78,30,75),(31,82,34,79),(32,83,35,80),(33,84,36,81),(37,88,40,85),(38,89,41,86),(39,90,42,87),(43,94,46,91),(44,95,47,92),(45,96,48,93)], [(1,19,7,13),(2,24,8,18),(3,23,9,17),(4,22,10,16),(5,21,11,15),(6,20,12,14),(25,43,31,37),(26,48,32,42),(27,47,33,41),(28,46,34,40),(29,45,35,39),(30,44,36,38),(49,70,55,64),(50,69,56,63),(51,68,57,62),(52,67,58,61),(53,72,59,66),(54,71,60,65),(73,94,79,88),(74,93,80,87),(75,92,81,86),(76,91,82,85),(77,96,83,90),(78,95,84,89)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45),(49,64),(50,65),(51,66),(52,61),(53,62),(54,63),(55,70),(56,71),(57,72),(58,67),(59,68),(60,69),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)]])`

36 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 3 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 4M 6A 6B 6C 6D 6E 6F 6G 12A 12B 12C 12D 12E 12F order 1 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 12 12 12 12 12 12 size 1 1 1 1 4 4 4 12 12 2 2 2 4 4 4 6 6 6 6 12 12 12 12 2 2 2 4 4 8 8 4 4 4 4 8 8

36 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 type + + + + + + + + + + + + + + + + + + - + image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 S3 D6 D6 D6 D6 C4○D4 2+ 1+4 D4⋊2S3 D4⋊6D6 D4○D12 kernel C6.472+ 1+4 C23.9D6 C23.21D6 C4.Dic6 Dic3⋊5D4 C23.26D6 C12⋊7D4 D4×Dic3 D6⋊3D4 C23.14D6 C12⋊3D4 C3×C4⋊D4 C4⋊D4 C22⋊C4 C4⋊C4 C22×C4 C2×D4 C12 C6 C4 C2 C2 # reps 1 2 2 1 1 1 1 1 2 2 1 1 1 2 1 1 3 4 2 2 2 2

Matrix representation of C6.472+ 1+4 in GL8(𝔽13)

 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0
,
 5 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 0 0 1 0 0 0 0 0 0 0 12 12 0 0 0 0 12 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0
,
 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

`G:=sub<GL(8,GF(13))| [1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;`

C6.472+ 1+4 in GAP, Magma, Sage, TeX

`C_6._{47}2_+^{1+4}`
`% in TeX`

`G:=Group("C6.47ES+(2,2)");`
`// GroupNames label`

`G:=SmallGroup(192,1178);`
`// by ID`

`G=gap.SmallGroup(192,1178);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,675,570,297,6278]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^6=b^4=e^2=1,c^2=a^3,d^2=a^3*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^3*b^-1,d*b*d^-1=a^3*b,b*e=e*b,d*c*d^-1=e*c*e=a^3*c,e*d*e=a^3*b^2*d>;`
`// generators/relations`

׿
×
𝔽