Copied to
clipboard

## G = C6.462+ 1+4order 192 = 26·3

### 46th non-split extension by C6 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

Series: Derived Chief Lower central Upper central

 Derived series C1 — C2×C6 — C6.462+ 1+4
 Chief series C1 — C3 — C6 — C2×C6 — C22×S3 — S3×C23 — C23⋊2D6 — C6.462+ 1+4
 Lower central C3 — C2×C6 — C6.462+ 1+4
 Upper central C1 — C22 — C4⋊D4

Generators and relations for C6.462+ 1+4
G = < a,b,c,d,e | a6=b4=c2=1, d2=a3b2, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, ebe-1=a3b, cd=dc, ce=ec, ede-1=b2d >

Subgroups: 720 in 250 conjugacy classes, 95 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C24, Dic6, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C22×Dic3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, S3×C23, C22.32C24, C23.11D6, C23.21D6, C4⋊C4⋊S3, C12.48D4, C2×D6⋊C4, D4×Dic3, C232D6, C23.14D6, C3×C4⋊D4, C6.462+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, D42S3, S3×C23, C22.32C24, C2×D42S3, D46D6, D4○D12, C6.462+ 1+4

Smallest permutation representation of C6.462+ 1+4
On 48 points
Generators in S48
```(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 25 7 31)(2 26 8 32)(3 27 9 33)(4 28 10 34)(5 29 11 35)(6 30 12 36)(13 37 19 43)(14 38 20 44)(15 39 21 45)(16 40 22 46)(17 41 23 47)(18 42 24 48)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 19 10 16)(2 24 11 15)(3 23 12 14)(4 22 7 13)(5 21 8 18)(6 20 9 17)(25 43 34 40)(26 48 35 39)(27 47 36 38)(28 46 31 37)(29 45 32 42)(30 44 33 41)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 37 28 40)(26 38 29 41)(27 39 30 42)(31 43 34 46)(32 44 35 47)(33 45 36 48)```

`G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,7,31)(2,26,8,32)(3,27,9,33)(4,28,10,34)(5,29,11,35)(6,30,12,36)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,43,34,40)(26,48,35,39)(27,47,36,38)(28,46,31,37)(29,45,32,42)(30,44,33,41), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48)>;`

`G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,25,7,31)(2,26,8,32)(3,27,9,33)(4,28,10,34)(5,29,11,35)(6,30,12,36)(13,37,19,43)(14,38,20,44)(15,39,21,45)(16,40,22,46)(17,41,23,47)(18,42,24,48), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,19,10,16)(2,24,11,15)(3,23,12,14)(4,22,7,13)(5,21,8,18)(6,20,9,17)(25,43,34,40)(26,48,35,39)(27,47,36,38)(28,46,31,37)(29,45,32,42)(30,44,33,41), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,37,28,40)(26,38,29,41)(27,39,30,42)(31,43,34,46)(32,44,35,47)(33,45,36,48) );`

`G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,25,7,31),(2,26,8,32),(3,27,9,33),(4,28,10,34),(5,29,11,35),(6,30,12,36),(13,37,19,43),(14,38,20,44),(15,39,21,45),(16,40,22,46),(17,41,23,47),(18,42,24,48)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,19,10,16),(2,24,11,15),(3,23,12,14),(4,22,7,13),(5,21,8,18),(6,20,9,17),(25,43,34,40),(26,48,35,39),(27,47,36,38),(28,46,31,37),(29,45,32,42),(30,44,33,41)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,37,28,40),(26,38,29,41),(27,39,30,42),(31,43,34,46),(32,44,35,47),(33,45,36,48)]])`

36 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 2I 3 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L 6A 6B 6C 6D 6E 6F 6G 12A 12B 12C 12D 12E 12F order 1 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 12 12 12 12 12 12 size 1 1 1 1 2 2 4 4 12 12 2 4 4 4 4 6 6 6 6 12 12 12 12 2 2 2 4 4 8 8 4 4 4 4 8 8

36 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 type + + + + + + + + + + + + + + + + - + image C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 S3 D6 D6 D6 D6 C4○D4 2+ 1+4 D4⋊2S3 D4⋊6D6 D4○D12 kernel C6.462+ 1+4 C23.11D6 C23.21D6 C4⋊C4⋊S3 C12.48D4 C2×D6⋊C4 D4×Dic3 C23⋊2D6 C23.14D6 C3×C4⋊D4 C4⋊D4 C22⋊C4 C4⋊C4 C22×C4 C2×D4 C2×C6 C6 C22 C2 C2 # reps 1 2 2 2 1 1 2 2 2 1 1 2 1 1 3 4 2 2 2 2

Matrix representation of C6.462+ 1+4 in GL6(𝔽13)

 12 0 0 0 0 0 0 12 0 0 0 0 0 0 0 12 0 0 0 0 1 12 0 0 0 0 12 0 12 12 0 0 0 1 1 0
,
 12 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 1 12 0 0 1 1 2 1 0 0 8 8 12 0 0 0 9 8 12 0
,
 12 0 0 0 0 0 0 12 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 8 8 12 0 0 0 8 8 0 12
,
 5 0 0 0 0 0 0 5 0 0 0 0 0 0 4 11 0 0 0 0 2 9 0 0 0 0 9 0 11 9 0 0 11 2 11 2
,
 5 11 0 0 0 0 0 8 0 0 0 0 0 0 2 9 0 0 0 0 4 11 0 0 0 0 9 0 11 9 0 0 0 4 4 2

`G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,12,0,0,0,12,12,0,1,0,0,0,0,12,1,0,0,0,0,12,0],[12,8,0,0,0,0,0,1,0,0,0,0,0,0,0,1,8,9,0,0,0,1,8,8,0,0,1,2,12,12,0,0,12,1,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,8,8,0,0,0,1,8,8,0,0,0,0,12,0,0,0,0,0,0,12],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,4,2,9,11,0,0,11,9,0,2,0,0,0,0,11,11,0,0,0,0,9,2],[5,0,0,0,0,0,11,8,0,0,0,0,0,0,2,4,9,0,0,0,9,11,0,4,0,0,0,0,11,4,0,0,0,0,9,2] >;`

C6.462+ 1+4 in GAP, Magma, Sage, TeX

`C_6._{46}2_+^{1+4}`
`% in TeX`

`G:=Group("C6.46ES+(2,2)");`
`// GroupNames label`

`G:=SmallGroup(192,1176);`
`// by ID`

`G=gap.SmallGroup(192,1176);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,675,297,136,6278]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^6=b^4=c^2=1,d^2=a^3*b^2,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;`
`// generators/relations`

׿
×
𝔽