Copied to
clipboard

G = C4⋊C4.178D6order 192 = 26·3

51st non-split extension by C4⋊C4 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.178D6, (D4×Dic3)⋊16C2, (C2×D4).152D6, C4⋊D4.10S3, C22⋊C4.47D6, (C2×C6).144C24, C4.Dic618C2, (C22×C4).383D6, Dic6⋊C421C2, C12.201(C4○D4), C4.67(D42S3), C23.12D615C2, C12.48D431C2, (C2×C12).501C23, (C6×D4).118C22, C23.23D67C2, C23.16D64C2, C23.8D614C2, C23.21(C22×S3), (C22×C6).15C23, Dic3.41(C4○D4), C22.5(D42S3), Dic3⋊C4.15C22, C4⋊Dic3.205C22, C22.165(S3×C23), (C4×Dic3).91C22, (C22×C12).238C22, C36(C23.36C23), (C2×Dic3).226C23, (C2×Dic6).152C22, C6.D4.21C22, (C22×Dic3).105C22, (C2×C4×Dic3)⋊8C2, C2.35(S3×C4○D4), C6.149(C2×C4○D4), (C3×C4⋊D4).7C2, (C2×C6).20(C4○D4), C2.32(C2×D42S3), (C3×C4⋊C4).140C22, (C2×C4).292(C22×S3), (C3×C22⋊C4).9C22, SmallGroup(192,1159)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4⋊C4.178D6
C1C3C6C2×C6C2×Dic3C22×Dic3C2×C4×Dic3 — C4⋊C4.178D6
C3C2×C6 — C4⋊C4.178D6
C1C22C4⋊D4

Generators and relations for C4⋊C4.178D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2b2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=c-1 >

Subgroups: 496 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic6, C2×Dic3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C22×Dic3, C22×Dic3, C22×C12, C6×D4, C6×D4, C23.36C23, C23.16D6, C23.8D6, Dic6⋊C4, C4.Dic6, C2×C4×Dic3, C12.48D4, D4×Dic3, D4×Dic3, C23.23D6, C23.12D6, C3×C4⋊D4, C4⋊C4.178D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, D42S3, S3×C23, C23.36C23, C2×D42S3, S3×C4○D4, C4⋊C4.178D6

Smallest permutation representation of C4⋊C4.178D6
On 96 points
Generators in S96
(1 16 19 26)(2 17 20 27)(3 18 21 28)(4 13 22 29)(5 14 23 30)(6 15 24 25)(7 45 33 68)(8 46 34 69)(9 47 35 70)(10 48 36 71)(11 43 31 72)(12 44 32 67)(37 58 95 89)(38 59 96 90)(39 60 91 85)(40 55 92 86)(41 56 93 87)(42 57 94 88)(49 61 84 78)(50 62 79 73)(51 63 80 74)(52 64 81 75)(53 65 82 76)(54 66 83 77)
(1 69 72 4)(2 5 67 70)(3 71 68 6)(7 25 18 36)(8 31 13 26)(9 27 14 32)(10 33 15 28)(11 29 16 34)(12 35 17 30)(19 46 43 22)(20 23 44 47)(21 48 45 24)(37 73 76 40)(38 41 77 74)(39 75 78 42)(49 88 60 81)(50 82 55 89)(51 90 56 83)(52 84 57 85)(53 86 58 79)(54 80 59 87)(61 94 91 64)(62 65 92 95)(63 96 93 66)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 94 43 75)(2 93 44 74)(3 92 45 73)(4 91 46 78)(5 96 47 77)(6 95 48 76)(7 79 28 55)(8 84 29 60)(9 83 30 59)(10 82 25 58)(11 81 26 57)(12 80 27 56)(13 85 34 49)(14 90 35 54)(15 89 36 53)(16 88 31 52)(17 87 32 51)(18 86 33 50)(19 42 72 64)(20 41 67 63)(21 40 68 62)(22 39 69 61)(23 38 70 66)(24 37 71 65)

G:=sub<Sym(96)| (1,16,19,26)(2,17,20,27)(3,18,21,28)(4,13,22,29)(5,14,23,30)(6,15,24,25)(7,45,33,68)(8,46,34,69)(9,47,35,70)(10,48,36,71)(11,43,31,72)(12,44,32,67)(37,58,95,89)(38,59,96,90)(39,60,91,85)(40,55,92,86)(41,56,93,87)(42,57,94,88)(49,61,84,78)(50,62,79,73)(51,63,80,74)(52,64,81,75)(53,65,82,76)(54,66,83,77), (1,69,72,4)(2,5,67,70)(3,71,68,6)(7,25,18,36)(8,31,13,26)(9,27,14,32)(10,33,15,28)(11,29,16,34)(12,35,17,30)(19,46,43,22)(20,23,44,47)(21,48,45,24)(37,73,76,40)(38,41,77,74)(39,75,78,42)(49,88,60,81)(50,82,55,89)(51,90,56,83)(52,84,57,85)(53,86,58,79)(54,80,59,87)(61,94,91,64)(62,65,92,95)(63,96,93,66), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,94,43,75)(2,93,44,74)(3,92,45,73)(4,91,46,78)(5,96,47,77)(6,95,48,76)(7,79,28,55)(8,84,29,60)(9,83,30,59)(10,82,25,58)(11,81,26,57)(12,80,27,56)(13,85,34,49)(14,90,35,54)(15,89,36,53)(16,88,31,52)(17,87,32,51)(18,86,33,50)(19,42,72,64)(20,41,67,63)(21,40,68,62)(22,39,69,61)(23,38,70,66)(24,37,71,65)>;

G:=Group( (1,16,19,26)(2,17,20,27)(3,18,21,28)(4,13,22,29)(5,14,23,30)(6,15,24,25)(7,45,33,68)(8,46,34,69)(9,47,35,70)(10,48,36,71)(11,43,31,72)(12,44,32,67)(37,58,95,89)(38,59,96,90)(39,60,91,85)(40,55,92,86)(41,56,93,87)(42,57,94,88)(49,61,84,78)(50,62,79,73)(51,63,80,74)(52,64,81,75)(53,65,82,76)(54,66,83,77), (1,69,72,4)(2,5,67,70)(3,71,68,6)(7,25,18,36)(8,31,13,26)(9,27,14,32)(10,33,15,28)(11,29,16,34)(12,35,17,30)(19,46,43,22)(20,23,44,47)(21,48,45,24)(37,73,76,40)(38,41,77,74)(39,75,78,42)(49,88,60,81)(50,82,55,89)(51,90,56,83)(52,84,57,85)(53,86,58,79)(54,80,59,87)(61,94,91,64)(62,65,92,95)(63,96,93,66), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,94,43,75)(2,93,44,74)(3,92,45,73)(4,91,46,78)(5,96,47,77)(6,95,48,76)(7,79,28,55)(8,84,29,60)(9,83,30,59)(10,82,25,58)(11,81,26,57)(12,80,27,56)(13,85,34,49)(14,90,35,54)(15,89,36,53)(16,88,31,52)(17,87,32,51)(18,86,33,50)(19,42,72,64)(20,41,67,63)(21,40,68,62)(22,39,69,61)(23,38,70,66)(24,37,71,65) );

G=PermutationGroup([[(1,16,19,26),(2,17,20,27),(3,18,21,28),(4,13,22,29),(5,14,23,30),(6,15,24,25),(7,45,33,68),(8,46,34,69),(9,47,35,70),(10,48,36,71),(11,43,31,72),(12,44,32,67),(37,58,95,89),(38,59,96,90),(39,60,91,85),(40,55,92,86),(41,56,93,87),(42,57,94,88),(49,61,84,78),(50,62,79,73),(51,63,80,74),(52,64,81,75),(53,65,82,76),(54,66,83,77)], [(1,69,72,4),(2,5,67,70),(3,71,68,6),(7,25,18,36),(8,31,13,26),(9,27,14,32),(10,33,15,28),(11,29,16,34),(12,35,17,30),(19,46,43,22),(20,23,44,47),(21,48,45,24),(37,73,76,40),(38,41,77,74),(39,75,78,42),(49,88,60,81),(50,82,55,89),(51,90,56,83),(52,84,57,85),(53,86,58,79),(54,80,59,87),(61,94,91,64),(62,65,92,95),(63,96,93,66)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,94,43,75),(2,93,44,74),(3,92,45,73),(4,91,46,78),(5,96,47,77),(6,95,48,76),(7,79,28,55),(8,84,29,60),(9,83,30,59),(10,82,25,58),(11,81,26,57),(12,80,27,56),(13,85,34,49),(14,90,35,54),(15,89,36,53),(16,88,31,52),(17,87,32,51),(18,86,33,50),(19,42,72,64),(20,41,67,63),(21,40,68,62),(22,39,69,61),(23,38,70,66),(24,37,71,65)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R4S4T6A6B6C6D6E6F6G12A12B12C12D12E12F
order12222222344444444444···444446666666121212121212
size11112244222223333446···6121212122224488444488

42 irreducible representations

dim1111111111122222222444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D4C4○D4C4○D4D42S3D42S3S3×C4○D4
kernelC4⋊C4.178D6C23.16D6C23.8D6Dic6⋊C4C4.Dic6C2×C4×Dic3C12.48D4D4×Dic3C23.23D6C23.12D6C3×C4⋊D4C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4Dic3C12C2×C6C4C22C2
# reps1221111321112113444222

Matrix representation of C4⋊C4.178D6 in GL6(𝔽13)

150000
10120000
001000
000100
0000120
0000012
,
810000
050000
001800
0031200
0000120
0000012
,
810000
250000
001800
0001200
000090
0000113
,
810000
250000
005100
000800
0000811
0000125

G:=sub<GL(6,GF(13))| [1,10,0,0,0,0,5,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,0,0,0,0,0,1,5,0,0,0,0,0,0,1,3,0,0,0,0,8,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,2,0,0,0,0,1,5,0,0,0,0,0,0,1,0,0,0,0,0,8,12,0,0,0,0,0,0,9,11,0,0,0,0,0,3],[8,2,0,0,0,0,1,5,0,0,0,0,0,0,5,0,0,0,0,0,1,8,0,0,0,0,0,0,8,12,0,0,0,0,11,5] >;

C4⋊C4.178D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{178}D_6
% in TeX

G:=Group("C4:C4.178D6");
// GroupNames label

G:=SmallGroup(192,1159);
// by ID

G=gap.SmallGroup(192,1159);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,100,794,297,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2*b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽