extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xC4oD12):1C2 = D12:14D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):1C2 | 192,293 |
(C2xC4oD12):2C2 = C42.276D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):2C2 | 192,1036 |
(C2xC4oD12):3C2 = C24.38D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):3C2 | 192,1049 |
(C2xC4oD12):4C2 = C6.2- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):4C2 | 192,1066 |
(C2xC4oD12):5C2 = C42:14D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):5C2 | 192,1106 |
(C2xC4oD12):6C2 = C42.228D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):6C2 | 192,1107 |
(C2xC4oD12):7C2 = D12:23D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):7C2 | 192,1109 |
(C2xC4oD12):8C2 = D12:24D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):8C2 | 192,1110 |
(C2xC4oD12):9C2 = Dic6:23D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):9C2 | 192,1111 |
(C2xC4oD12):10C2 = Dic6:24D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):10C2 | 192,1112 |
(C2xC4oD12):11C2 = C6.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):11C2 | 192,1213 |
(C2xC4oD12):12C2 = C6.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):12C2 | 192,1214 |
(C2xC4oD12):13C2 = C2xC4oD24 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):13C2 | 192,1300 |
(C2xC4oD12):14C2 = C24.83D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):14C2 | 192,1350 |
(C2xC4oD12):15C2 = D12:17D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):15C2 | 192,596 |
(C2xC4oD12):16C2 = C6.2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):16C2 | 192,1069 |
(C2xC4oD12):17C2 = C42:10D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):17C2 | 192,1083 |
(C2xC4oD12):18C2 = C42:11D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):18C2 | 192,1084 |
(C2xC4oD12):19C2 = Dic6:20D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):19C2 | 192,1158 |
(C2xC4oD12):20C2 = C6.382+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):20C2 | 192,1166 |
(C2xC4oD12):21C2 = C6.722- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):21C2 | 192,1167 |
(C2xC4oD12):22C2 = D12:20D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):22C2 | 192,1171 |
(C2xC4oD12):23C2 = C6.172- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):23C2 | 192,1188 |
(C2xC4oD12):24C2 = D12:22D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):24C2 | 192,1190 |
(C2xC4oD12):25C2 = Dic6:22D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):25C2 | 192,1192 |
(C2xC4oD12):26C2 = C2xC8:D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):26C2 | 192,1305 |
(C2xC4oD12):27C2 = C24.9C23 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | 4 | (C2xC4oD12):27C2 | 192,1307 |
(C2xC4oD12):28C2 = C2xD12:6C22 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):28C2 | 192,1352 |
(C2xC4oD12):29C2 = C24.52D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):29C2 | 192,1364 |
(C2xC4oD12):30C2 = C2xQ8.13D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):30C2 | 192,1380 |
(C2xC4oD12):31C2 = C12.C24 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | 4 | (C2xC4oD12):31C2 | 192,1381 |
(C2xC4oD12):32C2 = (C2xC12):17D4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):32C2 | 192,1391 |
(C2xC4oD12):33C2 = C6.1082- 1+4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):33C2 | 192,1392 |
(C2xC4oD12):34C2 = C2xD4:6D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):34C2 | 192,1516 |
(C2xC4oD12):35C2 = C2xQ8.15D6 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):35C2 | 192,1519 |
(C2xC4oD12):36C2 = C2xS3xC4oD4 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):36C2 | 192,1520 |
(C2xC4oD12):37C2 = C2xD4oD12 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | | (C2xC4oD12):37C2 | 192,1521 |
(C2xC4oD12):38C2 = C2xQ8oD12 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 96 | | (C2xC4oD12):38C2 | 192,1522 |
(C2xC4oD12):39C2 = C6.C25 | φ: C2/C1 → C2 ⊆ Out C2xC4oD12 | 48 | 4 | (C2xC4oD12):39C2 | 192,1523 |